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Abstract 

In this work, we study two problems in mathematical ecology. These problems 

are formulated as partial diferential equations of reaction-difusion type. 

In the frst part of this work, we study the persistence of a single species or two 

species in a bounded domain subject to difusive movement, environmental drift and 

boundary loss. These populations are described by a reaction-difusion equation de-

scribing single- and two-species population dynamics. For the case of a single species, 

we establish the existence of the critical domain size, and analyze its dependence on 

the difusion rate and rate of loss at each boundary point. We also consider the com-

petition between two species which difer only in their dispersal rates. If the difusion 

rates of both species are sufciently large, we show that one species must exclude 

the other, and provide conditions under which the faster (or the slower) species will 

prevail. 

In the second part of this work, we study the spreading speed of a predator 

population that is expanding its range. Specifcally, we consider a difusive Lotka-

Volterra system describing the interaction of a predator species and a prey species. 

Motivated by the efect of global climate change, it is imposed that the efciency with 

which predators convert prey to ofspring is described by a function whose profle is 

fxed in the moving frame ξ = x − c1t. By applying the Hamilton-Jacobi approach, 

we completely determine the asymptotic spreading speed of the predator in the case 
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that the conversion efciency is monotonically increasing with arbitrary value of c1 > 

0. When the conversion efciency is monotonically decreasing, we determine the 

spreading speed if the speed c1 > 0 of the moving frame is sufciently fast or slow. 
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Chapter 1: Introduction 

1.1 Reaction-difusion equations in spatial ecology 

This thesis will be devoted to the analysis of systems of reaction-difusion equa-

tions inspired by ecology. In 1951, Skellam [86] proposed that the two-dimensional 

population density of successive generations of a biological species be described ac-

cording to a solution, u, of the heat equation ut = d(uxx + uyy), where d is a positive 

parameter. Furthermore, Skellam showed that the approximately linear relationship 

between the square root of territorial area and time, inferred from data for the ex-

panding habitat range of a population of invasive muskrats in central Europe, could be 

reproduced by his model. By adding a rule for population growth, Skellam obtained 

a reaction-difusion equation of the form 

ut = d(uxx + uyy) + f(u), (1.1) 

where f(u) describes the rate of population growth independent of dispersal. In so 

doing, Skellam was the frst to analyze reaction-difusion equations in the context of 

population dynamics. 

His work examined two fundamental issues that have since formed the basis for 

much study of reaction-difusion equations in theoretical ecology: (i) the persistence 
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of species in spatially heterogeneous habitats, and (ii) the rate of spread of species into 

new territory. This work is divided into two parts, which are motivated by precisely 

these two questions. 

The frst part concerns our results which have appeared in publication [56]. Specif-

ically, we consider the following reaction-difusion-advection equation describing a 

single species in a bounded, one-dimensional domain [0, l]: ut − αux + u(r − u/K), 0 < x < l, t > 0, = µuxx 

µux(0) − αu(0) = (b0 − 1)αu(0), (1.2) 
µux(l) − αu(l) = −blαu(l). 

Here, we are interested in the infuence of parameters, such as dispersal rate, domain 

size, and boundary conditions, on the persistence of the species u. 

Furthermore, as an extension of (1.2) we consider the following difusive Lotka-

Volterra system describing two species difering only in their dispersal rates:  
ut = µuxx − αux + u(r − u

K 
+v ), 0 < x < l, t > 0, 

− αvx + v(r − u+v ), 0 < x < l, t > 0,vt = νvxx K µux(0, t) − αu(0, t) = (b0 − 1)αu(0, t), t > 0, 
(1.3) 

µux(l, t) − αu(l, t) = −blαu(l, t), t > 0, 

νvx(0, t) − αv(0, t) = (b0 − 1)αv(0, t), t > 0, 
νvx(l, t) − αv(l, t) = −blαv(l, t), t > 0. 

Here, we are interested in the infuence of parameters on the competition between 

species u and v. 

In the second part of this thesis, we present our results which have been submitted 

for publication [55]. Specifcally, we consider the following difusive Lotka-Volterra 

system describing the interaction of a predator and a prey species in a one-dimensional 

unbounded spatial domain R1:  � �  + − 1 − u + a(x − c1t)v u in (0, ∞) × R 

vt = dvxx + r(1 − v − bu)v in (0, ∞) × R (1.4) 
ut = uxx 

 
u(0, x) = u0(x), v(0, x) = v0(x) in R. 
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Here, we are interested in the asymptotic spreading speed of the predator, u. In 

particular, we are interested in how the spreading speed depends on the environmental 

shifting speed c1 and the prey-to-predator conversion efciency function, a. 

The rest of this thesis is organized as follows. In Subsection 1.2 we briefy introduce 

our main results for (1.2) and (1.3), and present the complete statements and proofs 

in Chapter 2. In Subsection 1.3, we briefy introduce our main results for (1.4), and 

present the complete statements and proofs in Chapter 3. 

1.2 Species persistence: the critical domain size 

In the frst part of this work, we study the population dynamics of a single species 

and of two competing species in a one-dimensional, bounded, advective environment. 

For a single species, the population dynamics are represented by the following model:  ut = µuxx − αux + u(r − u/K), 0 < x < l, t > 0, 
µux(0) − αu(0) = (b0 − 1)αu(0), (1.5) 
µux(l) − αu(l) = −blαu(l). 

We are particularly interested in the ability of the species u to persist. Our main result 

is to prove that there is a threshold domain length l∗ , called the critical domain size, 

such that the species will persist if and only if l > l∗ . By fnding an explicit formula 

for l∗ as a function of model parameters, we are able to analyze the efect of the 

dispersal rate µ, the boundary parameters b0 and bl, the advection rate α, and the 

intrinsic growth rate r on the persistence of the species. 

A key fact used in our analysis relates the asymptotic dynamics of (1.5) to the 

principal eigenvalue of the following eigenvalue problem, which arises from linearizing 

(1.5) about the steady state u ≡ 0: ( 
µφxx − αφx + rφ = λφ, 0 < x < l, 

(1.6)
µφx(0) − αb0φ(0) = µφx(l) + α(bl − 1)φ(l) = 0. 
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It is well-known that problem (1.6) admits a principal eigenvalue, λ1 (see, e.g., [33]), 

in the sense that: 

1. λ1 ∈ R is a simple eigenvalue. 

2. λ1 > Re λ for all other eigenvalues λ of (1.6) (in fact, all eigenvalues of (1.6) 

are real-valued). 

3. λ1 is the unique eigenvalue of (1.6) with a positive eigenfunction, φ1. 

The following well-known result (see [16, 57]) supplies a persistence criterion for 

the species, based on the sign of λ1: 

Theorem 1. Let λ1 be the principal eigenvalue of (1.6). 

(i) If λ1 ≤ 0, then lim ∥u(·, t)∥C0([0,l]) = 0 for every nonnegative solution of (1.5). 
t→∞ 

(ii) If λ1 > 0, then (1.5) has a unique positive equilibrium θ. Moreover, 

lim ∥u(·, t) − θ∥C0([0,l]) = 0 
t→∞ 

for every nonnegative, nontrivial solution of (1.5). 

Thus, the solution u ≡ 0 is globally asymptotically stable if and only if λ1 ≤ 0. 

Otherwise, if λ1 > 0, any initially non-negative population will tend to a positive 

equilibrium, and the species persists. With this fact, the critical domain size can be 

defned as follows: 

Defnition. Given µ, α, r > 0, b0 ≥ 0, and bl ≥ 0, we say that l∗ ∈ (0, ∞] is a critical 

domain size of (1.5) if  > 0 for l > l∗  
λ1 = 0 for l = l∗  

< 0 for l < l∗ , 
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By showing that the mapping λ1 7→ l is increasing, the existence of l∗ is established 

for b0 + bl > 1 (Ch. 2, Theorem 2). In Ch. 2, Theorem 3, we establish properties of 

the critical domain size l∗ as a function of the dispersal rate, and determine values of 

b0 and bl such that faster difusion can be advantageous for persistence. 

Finally, we consider competition between two species, which disperse at distinct 

rates µ and ν, but are otherwise identical:  
ut = µuxx − αux + u(r − u

K 
+v ), 0 < x < l, t > 0, 

vt = νvxx − αvx + v(r − u+v ), 0 < x < l, t > 0, K µux(0, t) − αu(0, t) = (b0 − 1)αu(0, t), t > 0, 
(1.7) 

µux(l, t) − αu(l, t) = −blαu(l, t), t > 0, 

νvx(0, t) − αv(0, t) = (b0 − 1)αv(0, t), t > 0, 
νvx(l, t) − αv(l, t) = −blαv(l, t), t > 0. 

In Ch. 2, Theorem 4, we establish a sufcient condition to determine whether the 

faster or slower dispersing species wins the competition, so long as the dispersal rates 

of both species are sufciently large. 

1.3 Asymptotic spreading speed: a predator-prey system in 
a shifting environment 

In the second part of this work, we study a predator-prey system inspired by the 

efects of changing climate. We consider the system:  � � ut + − 1 − u + a(x − c1t)v u in (0, ∞) × R = uxx 

vt = dvxx + r(1 − v − bu)v in (0, ∞) × R (1.8) 
u(0, x) = u0(x), v(0, x) = v0(x) in R. 

Here, u represents the density of a predator species, and v represents the density of its 

prey. We are interested in the spreading properties of the solution u(t, x) of (1.8), i.e., 

the asymptotic spreading speed of the predator. Following Aronson and Weinberger 
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[4], we say that the species u spreads with speed c ∗ > 0 if 

lim sup u(t, x) = 0 for c ∈ (c ∗ , ∞), and lim inf u(t, x) > 0 for c ∈ (0, c ∗ ). 
t→∞ t→∞|x|>ct |x|>ct 

(1.9) 

Although predator-prey systems have been studied commonly in the ecological lit-

erature [16], before the papers of Pan in 2017 [79] and Ducrot et al. in 2019 [30], 

there were relatively few investigations into the asymptotic spreading dynamics of 

such systems from general initial conditions. 

Neither [79] nor [30] considered spatially or temporally heterogeneous systems. In 

our work, the function a(x − c1t) leads to diferent spreading dynamics for the preda-

tor species. This function represents the efciency with which predators produce 

ofspring from consumption of prey. We assume that the profle of the conversion 

efciency is fxed in the moving frame ξ = x − c1t, in the manner of other recent 

ecologically-motivated reaction-difusion equations with interest in the efects of cli-

mate change [82, 10, 66, 11]. In our work, we are motivated particularly by trends in 

rising global temperatures. Here, the constant c1 > 0 corresponds to the velocity of 

moving temperature isotherms, while the fxed profle a(ξ) models the hypothesized 

dependence of the predator conversion efciency on the climate. 

The main result of our work is to characterize the spreading speed of the predator 

in the cases that (i) a(ξ) is monotonically increasing (Ch. 3, Theorem 7) and (ii) 

a(ξ) is monotonically decreasing and the velocity of climate shift is sufciently fast 

or slow (Ch. 3, Theorem 8). The frst case represents the situation when conversion 

efciency declines with increasing temperature, which could be the case for predators 

already residing in a “thermally optimal” [51, 23, 15] habitat range. The case when 
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a(ξ) is monotonically decreasing corresponds to the situation when conversion ef-

ciency increases with warming, which has been observed experimentally in a microbial 

predator-prey system [22]. 

We briefy summarize our results in each case. In the case that the conversion 

efciency is monotonically increasing, there are three possible spreading speeds of 

the predator, depending on the velocity of the climate shift. When the speed of 

climate shift is slow relative to the maximal spreading speed of the predator, then 

the predator spreads at its maximal speed, ie., the speed determined by the maximal 

limiting conversion rate a(+∞) and an abundance of prey. When the climate shift 

is signifcantly faster than the predator’s maximum speed, then the predator falls 

behind the shifting climate, and spreads at speed determined by the minimal limiting 

conversion rate, a(−∞). Finally, when the climate shifts at an intermediate speed, 

the predator spreads at a rate in between its minimal and maximal speeds, and is 

“non-locally pulled” [48, 42] by the shifting climate front. 

In the case that a(ξ) is monotonically decreasing, the spreading speed of the preda-

tor is minimal when the climate shift is slow. On the other hand, when the climate 

shift is very fast, then the predator spreads at a maximal rate. For intermediate 

speeds of climate shift, we conjecture that the predator spreads at the same rate as 

the climate shift. However, this case is not covered in our work. A possible approach 

is to use the persistence theory as in [29]. 
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Chapter 2: Population Dynamics in an Advective 

Environment 

2.1 Introduction 

How does dispersal afect the ability of a species to persist? In spatially heteroge-

neous but temporally constant environments, Hastings showed that a small, passively 

difusing population cannot survive in the presence of an established population of 

slower difusers [46]. The idea that the “slower difuser wins” was later reinforced by 

Dockery et al., who conjectured that in a population of fnitely many phenotypes, 

difering solely in their difusion rates, only the slowest difuser may survive [25]. See 

[19, 58] for recent mathematical progress on this question. 

In the above studies, species were assumed to disperse by passive difusion alone. 

In advective environments, on the other hand, the difusive movement of an organism 

is combined with an environmentally-imposed drift. Inspired by the earlier work of 

Speirs and Gurney [89], the following model for competing species in a river was 

8 
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studied by Lou and Lutscher [72] and Lou and Zhou [74]:  
ut = µuxx − αux + u(r − u − v), 0 < x < l, t > 0, 

vt = νvxx − αvx + v(r − u − v), 0 < x < l, t > 0, µux(0) − αu(0) = 0, t > 0, 
(2.1) 

µux(l) − αu(l) = −bαu(l), t > 0, 

νvx(0) − αv(0) = 0, t > 0, 
νvx(l) − αv(l) = −bαv(l), t > 0. 

Here, l > 0 is the length of the river, µ > 0 and ν > 0 are the difusion rates of 

species u and v, respectively, α > 0 is the advection rate, r > 0 is the intrinsic growth 

rate, and b ≥ 0 is a parameter which mediates the rate of population loss at the 

downstream boundary x = l. Speirs and Gurney [89] previously considered models 

of the form (2.1) in the single species case, and with b = +∞, to study the “drift 

paradox” of species persistence in rivers. See also [92], which considered (2.1) for a 

single species with the “free-fow” condition b = 1, and [90], which studied (2.1) with 

the free-fow condition imposed at the upstream boundary. 

It has been shown that for 0 ≤ b ≤ 1, only the faster-dispersing species may persist 

[72, 74]. Thus, in homogeneous habitat with a “mildly hostile” downstream boundary, 

the presence of advection can disrupt the advantage of the slower difuser. However, 

fast difusion may be deleterious if the loss rate at the downstream boundary is severe. 

In particular, for b > 3 
2
, it is possible for a sufciently-fast difuser to become extinct, 

while the relatively slower difuser persists [74]. 

In fact, Hao et al. [45] showed that the constant b = 3 
2
represents a critical 

threshold for the evolution of dispersal in (2.1). Given a population of two sufciently 

fast difusers, only the faster of the two may persist for 0 ≤ b < 3 
2
. On the other 

hand, for b > 3 
2
, if the difusion rates of both species are sufciently large then only 

the slower species can persist, while the relatively faster species becomes extinct. 
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2.1.1 The model 

In (2.1), the no-fux boundary condition is imposed at the upstream boundary 

x = 0. In this paper, we relax this assumption and consider the following system:  
ut = µuxx − αux + u(r − u

K 
+v ), 0 < x < l, t > 0, 

− αvx + v(r − u+v ), 0 < x < l, t > 0,vt = νvxx K µux(0, t) − αu(0, t) = (b0 − 1)αu(0, t), t > 0, 
(2.2) 

µux(l, t) − αu(l, t) = −blαu(l, t), t > 0, 

νvx(0, t) − αv(0, t) = (b0 − 1)αv(0, t), t > 0, 
νvx(l, t) − αv(l, t) = −blαv(l, t), t > 0, 

where u(x, t) and v(x, t) are the population densities of competing species which dif-

fuse at positive rates µ and ν, respectively, and α, r, K, b0, bl are positive parameters, 

with b0 + bl > 1. 

There have been several other recent works investigating Lotka-Volterra competi-

tion systems in advective environments. The efect of distinct advection rates and a 

spatially heterogeneous resource function, r(x), on the global dynamics of (2.2), with 

(b0, bl) = (1, 0), was studied in [73], while [91] further considered the possibility of 

distinct resource functions r1(x) ̸= r2(x) for the two species. The efect of distinct ad-

vection rates and identical dispersal rates on the global dynamics of (2.2) was studied 

in [104], with b0 > 1 and bl > 0. We also mention [98], which determines the global 

dynamics of (2.2) under the condition that b0 and bl are not large, and [38], where 

the global dynamics of a generalized river model were considered. For a summary of 

recent developments concerning competitive reaction-difusion-advection systems, we 

refer to the review [84]. 

In this work, we investigate (2.2) for slightly more general boundary conditions, 

and focus on the efect of dispersal. We identify a function of the boundary loss 
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parameters b0 and bl which divides the space of parameters b0 and bl into two re-

gions, and show that if both species difuse rapidly, then relatively faster difusion is 

advantageous in one, while slower difusion is advantageous in the other. 

2.1.2 Motivation of our problem: climate change 

In concert with rising temperatures, many species have been observed to migrate 

toward the poles [80]. To study these habitat shifts, Lewis and Potapov [82] considered 

a two-species model of the form  
ut = µuxx + u(r1 − c11u − c12v), 0 ≤ x + αt ≤ l, vt = νvxx + v(r2 − c21u − c22v), 0 ≤ x + αt ≤ l, 

(2.3) 
ut = µuxx − κ1u, x + αt < 0 and x + αt > l, 
vt = νvxx − κ2v, x + αt < 0 and x + αt > l. 

(See also [10], which considered the efect of a shifting habitat range on the dynamics 

of a single species. We also note recent work [2] regarding reaction-difusion equations 

on time-dependent domains). The coefcients ri, cii, and cij (i ̸= j) correspond to the 

intrinsic growth rates, intraspecifc competition rates, and interspecifc competition 

rates, respectively, of species u and v. Species growth and competition occur in a 

domain of constant length l, corresponding to the suitable habitat range of both 

species, which shifts with velocity α > 0 (to ease the connection with models of the 

form (2.2), we have modifed the equation in [82] to consider a habitat range that 

shifts from right to left). On the exterior of this domain, the environment is assumed 

to be unsuitable for species growth, and the species die at rates κi. Finally, only 

species densities which converge to 0 as x → ±∞ are considered. 

We will assume that both species are identical in their intrinsic growth rates, 

r = r1 = r2, and that cij = 
K 
1 for 1 ≤ i, j ≤ 2. By the change of variables x → x + αt, 

(2.3) is converted to an equation in which the suitable habitat range of each species 
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





is fxed:  
ut = µuxx − αux + u(r − u+v ), 0 ≤ x ≤ l, K vt = νvxx − αvx + v(r − u+v ), 0 ≤ x ≤ l,

K (2.4) 
ut = µuxx − αux − κ1u, x < 0 or x > l, 
vt = νvxx − αvx − κ2v, x < 0 or x > l. 

As in [82], we assume that ux, vx, u, and v are continuous at x = 0 and x = l. 

Then, following Ludwig et al. [75], the set of equilibrium solutions to (2.4) can be 

identifed with the set of stationary solutions for the following equation on a bounded 

domain:  
− αux + u(r − u+v ), 0 < x < l,ut = µuxx K vt = νvxx − αux + u(r − u

K 
+v ), 0 < x < l, 

(2.5) 
µux(0) − kµ 

+u(0) = νvx(0) − kν 
+v(0) = 0, 

µux(l) − kµ 
−u(l) = νvx(l) − kν 

−v(l) = 0, 

where p √ 
α ± α2 + 4µκ1 α ± α2 + 4νκ2

k± k± = , and = .µ ν2 2 

Moreover, by Theorem 3.1 in [82], corresponding stationary solutions of (2.4) and 

(2.5) are either both linearly unstable or stable. Thus, to consider steady states of 

(2.4) and their stability, we may instead consider the equilibrium solutions of (2.5). 

We note that in the single species case where v = 0, equilibrium solutions to (2.5) are q 
4µκ11+ 1+ 

equilibrium solutions of (2.2), with b0 = bl = 
2 

α2 
. 

2.1.3 The critical domain size 

Meaningful competition may occur if at least one species is capable of persisting 

in the absence of the other. This leads us to study the dynamics of (2.2) for a single 

species, given by the following equation:   − αux + u(r − u/K), 0 < x < l, t > 0,ut = µuxx 

µux(0) − αu(0) = (b0 − 1)αu(0), (2.6) 
µux(l) − αu(l) = −blαu(l). 
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In particular, we are interested in the existence of positive steady state solutions 

of (2.6), which satisfy  µuxx − αux + u(r − u/K) = 0, 0 < x < l,  
µux(0) − αu(0) = (b0 − 1)αu(0), (2.7) 
µux(l) − αu(l) = −blαu(l). 

If b0 +bl > 1, there is net population loss at one or both boundary points. In order 

for the species to persist, the habitat must be large enough for the overall population 

growth to overcome the hostile conditions at the habitat edges. The minimal size of 

habitat required to sustain a population is known as the critical domain size [53], and 

we assert its existence for (2.6) in the following theorem: 

Theorem 2. Fix µ, α, r > 0, and b0, bl ≥ 0 such that b0 + bl > 1. There exists a 

function l∗ = l∗(µ, α, r, b0, bl) such that (2.6) has a unique, positive, globally asymp-

totically stable steady state if and only if l > l∗ . If l ≤ l∗ , then all solutions of (2.6) 

converge asymptotically to u = 0. Moreover, if we denote (
α2 

if min{b0, bl} ≥ 1 

µ̂ = 4r 2
1 

(2.8)α2 min{b0,bl}(1−min{b0,bl}) if 0 ≤ min{b0, bl} < ,
r 2 

then l∗ is fnite if and only if µ > µ̂(b0, bl), and satisfes 

α(b0 + bl − 1)
lim l ∗ (µ, α, r, b0, bl) = ∞, and lim l ∗ (µ, α, r, b0, bl) = . 
µ↘µ̂ µ→∞ r 

Remark. Infuential early work regarding the critical domain size for randomly dis-

persing species can be found in [53, 86]. The problem of critical domain size in an 

advective environment was frst studied in [89] in the context of a river habitat with 

the no-fux condition at the upstream boundary and a lethal downstream boundary 

(see also the review [64]). Later on, this work was generalized in [76] for the case of 

Danckwerts boundary conditions, and a rigorous argument was provided for the ex-

istence of critical domain size using a next generation approach. Further discussion 
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of the critical domain size for river environments can be found in [92, 74, 45, 104]. 

In particular, in [104], a formula for the critical domain size of (2.6) as a function 

of the dispersal rate was derived for boundary conditions b0 > 1, bl > 0. Here our 

contribution is to give a diferent proof for slightly more general boundary conditions 

by showing that, with other parameters being fxed, the mapping l 7→ λ1(l), from the 

domain size l to the principal eigenvalue λ1 of the linearized problem at the trivial 

equilibrium, is invertible. 

We can use the notion of a critical domain size to assess the relative advantages of 

distinct dispersal strategies. Our frst result concerns the monotonicity of the critical 

domain size l∗ = l∗(µ) as a function of the difusion rate: 

Theorem 3. Fix r, α > 0, and b0, bl ≥ 0 such that b0 + bl > 1. Let µ̂ be given as in 

(2.8) and defne 

1 1 1 (b0 + bl − 1)2 

G(b0, bl) = + (b0 − )(bl − ) − . (2.9)
4 2 2 3 

(a) If G(b0, bl) > 0, then µ 7→ l∗(µ) is strictly decreasing for µ ≫ 1. Suppose, in 

addition, that (b0 + bl − 1)2 ≥ 0.941(b0 + bl − 1 − 2b0bl)2 , and that either 

1 1 
min{b0, bl} ≥ or min{b0, bl} < and max{b0, bl} ≤ 1. 

2 2 

Then µ 7→ l∗(µ) is globally strictly decreasing on (µ̂, ∞). 

(b) If G(b0, bl) < 0, then µ 7→ l∗(µ) is strictly increasing for µ ≫ 1. Suppose, in 

addition, that (b0 + bl − 1)2 ≥ 0.941(b0 + bl − 1 − 2b0bl)2 and min{b0, bl} ≥ 1 . 

Then there exists µ̃ > α 
4r 

2 
such that µ 7→ l∗(µ) is strictly decreasing on (µ̂, µ̃) 

and strictly increasing on (µ̃, ∞). 
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Theorem 3 was proved previously by the combined eforts of [74] and [45] in the 

case b0 = 1 and bl > 0. When the no-fux condition (b0 = 1) is imposed at the 

upstream boundary, faster difusion is advantageous for persistence if the population 

loss rate is low (bl ≤ 3
2 ), but may become deleterious when the loss rate is more severe 

(bl > 
2
3 ). 

For general b0 and bl satisfying b0 + bl > 1, a similar dichotomy holds. For 

˜example, suppose b := b0 = bl. Then Theorem 3 implies that, for sufciently large 

difusion rates, increasing µ decreases the critical domain size when the boundary loss 

parameter b̃ is mild, so that faster difusion is advantageous for persistence. On the 

other hand, when b̃ is large, the critical domain size is an increasing function of the 

difusion rate for large µ (Figure 2.1). 

Corollary 1. Suppose b̃ := b0 = bl. 

√ 
(a) If 1

2 < b̃ < 1
2 (1 + 3), then µ 7→ l∗(µ) is strictly decreasing for µ ≫ 1. 

√ 
(b) If b̃ > 1

2 (1 + 3), then µ 7→ l∗(µ) is strictly increasing for µ ≫ 1. 

Interestingly, the threshold beyond which faster difusion becomes disadvanta-

geous (among sufciently large difusion rates) is nonlinear in the parameters b0 and 

bl (Figure 2.2). For example, if the loss parameter b0 at the upstream boundary is 

fxed and 1 < b0 < 3
2 , then continuously increasing the downstream loss parameter bl 

from bl = 0 results in two points at which the relative advantage of fast difusion is re-

versed. Here, faster difusion is not advantageous for persistence among large difusion 

rates both when bl ≥ 0 is sufciently small or sufciently large, while for intermediate 

values of bl, the critical domain size is an increasing function for sufciently fast rates 

of difusion. 

15 



0 2 4
0
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Figure 2.1: Dependence of l∗ on the difusion rate µ for varying b̃ = b0 = bl. l∗ is√ 
strictly decreasing for µ ≫ 1 if b̃ < 1 (1 + 3), and strictly increasing for µ ≫ 1 if√ 2 

b̃ > 1
2 (1 + 3) ≈ 1.366 (Corollary 1). 

2.1.4 Competitive dynamics 

The relative advantages of distinct dispersal rates for the persistence of a single 

species suggest similar advantages in the competition between two species. 

For µ > 0, let θµ denote the unique positive solution of (2.6), if it exists. We now 

state our main result on the competitive dynamics of (2.2): 
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Figure 2.2: l∗(µ) is strictly decreasing for µ ≫ 1 if (b0, bl) lies in regions I, II, or 
III above, and l∗(µ) is decreasing for all µ > µ̂ if (b0, bl) lies in region II and either 
min{b0, bl} ≥ 1 , or min{b0, bl} < 1 and max{b0, bl} ≤ 1 (Theorem 3 (a)). On the

2 2 
other hand, l∗(µ) is strictly increasing for µ ≫ 1 if (b0, bl) lies in regions IV, V, or VI. 
If (b0, bl) lies in regions V or VI, and min{b0, bl} ≥ 1 , then l∗(µ) decreases to a global

2 
minimum, then becomes monotonically increasing (Theorem 3 (b)). 

Theorem 4. Let b0 + bl > 1 and recall the defnition of G(b0, bl) in (2.9). 

α(b0+bl−1)(a) If G(b0, bl) > 0 and l > 
r , then there exists µ > 0 such that for µ > ν ≥ µ, 

the steady state (θµ, 0) is globally asymptotically stable. 
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α(b0+bl−1)(b) If G(b0, bl) < 0 and l > 
r , then there exists µ > 0 such that for µ > ν ≥ µ, 

the steady state (0, θν ) is globally asymptotically stable. 

For two species with sufciently large difusion rates, the boundary conditions 

under which the faster-difusing population will exclude the slower-difusing one, and 

vice versa, correspond to those that determine whether the single species critical 

domain size is an eventually increasing or decreasing function of the difusion rate. 

This extends previous work in [45], where Theorem 4 was proved in the case b0 = 1 

and bl > 0. We see that in (2.2), advection disrupts the selective advantage of a 

slower difuser when there is mild loss at the habitat edges, in contrast to the systems 

considered in [46] and [25], where the slower difuser always prevails. 

It is interesting to consider the behavior of solutions of (2.7) in the limit as µ →∞. 
α(b0+bl−1)Fix l > 

r and b0, bl ≥ 0 such that b0 +bl > 1, so that a unique solution of (2.7) 

exists for all sufciently large µ. Then as µ → ∞, we observe that solutions θµ of 

(2.7) converge to an ideal free distribution. Introduced by Fretwell and Lucas [37], the 

ideal free distribution (IFD) describes an arrangement achieved by individuals that: 

(i) have full knowledge of the conditions of their habitat and (ii) can freely relocate to 

regions that are more favorable to growth. For models involving species movement, 

an IFD is achieved when no individuals may beneft from relocation, so that further 

movement does not occur. We observe that solutions θµ of (2.7) converge to the � � 
r − α(b0+bl−1)positive, constant density K 

l as µ → ∞, which is an IFD, since for 

constant species densities the homogeneity of the intrinsic growth rate r and carrying 

capacity K implies that all individuals will have the same ftness. 

It has been shown in several modeling applications that a species using an IFD 

movement strategy is resistant to invasion by an otherwise identical and rare species 
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that adopts a diferent movement strategy [17, 18, 6]. We have seen that µ = +∞ 

is an IFD strategy of (2.2). For b0, bl ≥ 0 such that b0 + bl > 1 and G(b0, bl) > 0, 

corresponding to “mild” boundary hostility, our results show that the species adopting 

a strategy that more closely approximates the IFD strategy (i.e. faster difusion) is 

resistant to invasion by the other, so long as both difusion rates are sufciently large. 

However, the opposite situation occurs for b0 and bl such that G(b0, bl) < 0. In 

such cases, although µ = +∞ represents an IFD movement strategy, a fast-difusing 

species can be invaded by a slower one. 

In case G(b0, bl) > 0, we note Theorem 4 demonstrates that, for competition 

between species with large difusion rates, i.e. µ, ν ≫ 1, then the faster difusing 

species is selected. In such a case, µ ∗ = +∞ is called a convergence stable strategy 

(CSS) [24]. On the other hand, if G(b0, bl) < 0, then µ ∗ = +∞ is not a CSS. 

2.1.5 Discussion 

We briefy discuss applications of our results to the moving habitat model studied 

in [82] and [10]. The set of steady states of the moving habitat model (2.4) and of 

equation (2.5), where the domain is bounded, are equivalent [82]. With appropriate 

choices for b0 and bl, equation (2.5) can be viewed as a special case of our model. In q 
4µκ11+ 1+ 

particular, our results apply directly for b0 and bl satisfying b0 = bl = 
2 

α2 
= q q4νκ21+ 1+ 

α2 
. Note that, in such a case, we have b0 + bl = 1 + 1 + 4µκ1 > 1.

2 α2 

We frst consider our results in the context of the parameter α, which denotes the 

velocity of the shifting habitat in (2.3), and serves to capture the potential efects of 

climate change. Theorem 2 shows that increasing α increases the threshold difusion 

rate µ̂ = α 
4r 

2 
, below which there can be no fnite critical domain size. Thus, if the 
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habitat range shifts too rapidly, then it is not possible for the species to persist, 

regardless of the size of the habitat. 

When the critical domain size is fnite, its dependence on the difusion rate is 

mediated crucially by the shifting of the habitat, as described in Theorem 3. We 

consider a single species, and assume that the death rate κ1 is inversely proportional q 
4µκ11+ 1+ 

to µ, so that µ may vary while b0 = = α2 
remains fxed. This means thatbl 2 

the hostility of the external environment is assumed to decrease if the difusion rate q 
4µκ11+ 1+ 

of the species is increased. Substituting b0 = bl = 
2 

α2 
, Theorem 3 implies that 

the mapping µ 7→ l∗(µ) is strictly decreasing for µ ≫ 1 if α2 > 2µκ1, and strictly 

0.941increasing for µ ≫ 1 if α2 < 2µκ1. If α2 ≥ 2( √ )µκ1, then µ 7→ l∗(µ) is 
0.059+ 0.059 

decreasing for all µ > µ̂. We see that if the habitat is shifting rapidly, then faster 

difusion (assuming that the product µκ1 is fxed) decreases the critical domain size 

among µ ≫ 1. On the other hand, if the habitat movement is slow, then faster 

difusion increases the critical domain size among µ ≫ 1, despite a proportional 

decrease in the external death rate κ1. 

We may also apply our results in the case of two-species competition, with b0 = q q
4µκ1 4νκ21+ 1+ 1+ 1+ 
α2 α2

bl = 
2 = 

2 . For competing species with sufciently large difusion 

rates and death rates satisfying µκ1 = νκ2 = C, where C is some positive constant, 

Theorem 4 implies that faster difusion is advantageous in rapidly-shifting habitats, 

while slower difusion is advantageous if the habitat is moving slowly. In particular, 

if α2 > 2C, then the faster of two species will exclude the slower one (if they do not 

both go extinct), so long as both difusion rates are sufciently large. However, if 

the habitat movement is slow (α2 < 2C), then the situation is reversed, and only 

the slower of two fast-difusing species may persist. By the comparison principle, we 
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observe that these advantages are predictably maintained in some situations where 

the difusion and death rates of each species are not in fxed proportion. For example, 

if the death rate of the “winning” species outside of the habitat is reduced, then the 

species will maintain its advantage. Similarly, if the death rate of the excluded species 

outside of the habitat is increased, then the species is still driven to extinction. 

2.2 Proofs for the critical domain size 

In this section we demonstrate the existence of a critical domain size for (2.6). To 

this end, we consider the eigenvalue problem ( 
µφxx − αφx + rφ = λφ, 0 < x < l, 

(2.10)
µφx(0) − αb0φ(0) = µφx(l) + α(bl − 1)φ(l) = 0, 

which arises from linearizing (2.6) about the steady state u ≡ 0. 

2.2.1 Existence of principal eigenvalue 

It is well-known that problem (2.10) admits a principal eigenvalue; see, e.g., [33]. 

Proposition 1. Let b0 + b1 ≥ 1. Then the eigenvalues of (2.10) are given by 

λ1 ≥ λ2 ≥ λ3 ≥ · · · , with lim λk = −∞. 
k→∞ 

Moreover, λ1 = λ1(µ, α, r, b0, bl, l) is a simple eigenvalue, and the only eigenvalue with 

a positive eigenfunction. The eigenvalue λ1 is the principal eigenvalue of (2.10). 

2.2.2 Formula for the critical domain size 

The notion of a critical domain size for (2.6) can be related to the sign of the 

principal eigenvalue λ1, based on the following well-known result; see [16, 57]. 

Theorem 5. Let λ1 be the principal eigenvalue of (2.10). 
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(i) If λ1 ≤ 0, then lim ∥u(·, t)∥C0([0,l]) = 0 for every nonnegative solution of (2.6). 
t→∞ 

(ii) If λ1 > 0, then (2.6) has a unique positive equilibrium θ. Moreover, 

lim ∥u(·, t) − θ∥C0([0,l]) = 0 
t→∞ 

for every nonnegative, nontrivial solution of (2.6). 

Thus, the trivial solution is globally asymptotically stable if and only if λ1 = 

λ1(µ, α, r, b0, bl, l) ≤ 0. Otherwise, the trivial solution is linearly unstable, and any 

initially nonnegative, nonzero species density will converge to a positive equilibrium— 

i.e., the species will persist. We defne the critical domain size of (2.6) to be the 

unique, minimal domain size at which the trivial solution loses stability. 

Defnition. Given µ, α, r > 0, b0 ≥ 0, and bl ≥ 0, we say that l∗ ∈ (0, ∞] is a critical 

domain size of (2.6) if  > 0 for l > l∗  
λ1 = 0 for l = l∗  

< 0 for l < l∗ , 

where λ1 is the principal eigenvalue of (2.10). q 
Note that when α = 0 and b0 = ∞, it is well-known that l∗ = π d ; see, e.g.,= bl r 

[16]. 

Under the assumption that b0, bl > 0 and b0 + bl > 1, we will establish that l∗ is 

well-defned, and is given by the following explicit formulas: 

• If min{b0, bl} ≥ 1 , then
2 ( 

+∞, 0 < µ ≤ α
2 

l ∗ 4r= (2.11)
F1(0; µ, α, r, b0, bl), µ > α 

4r 

2 
. 
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


• If 0 < min{b0, bl} < 1 , then
2  

0 < µ ≤ α
2 min{b0,bl}(1−min{b0,bl})+∞, r

α2 α2 min{b0,bl}(1−min{b0,bl})F2(0; µ, α, r, b0, bl), < µ < 
l ∗ r 4r = α(b0+bl−1) α2 (2.12)− , µ = 

4r(b0− 1 )(bl− 1 ) 4r  2 2 
α2 

F1(0; µ, α, r, b0, bl), µ > 
4r . 

Here, F1 and F2 are given by 

h � �2µ 2α(bl − 1
2 )F1(λ; µ, α, r, b0, bl) := p arctan p

4µ(r − λ) − α2 4µ(r − λ) − α2 � �i−2α(b0 − 1 )
− arctan p 2 , (2.13) 

4µ(r − λ) − α2 

µ
F2(λ; µ, α, r, b0, bl) := p

α2 − 4µ(r − λ)h ih ip p
1 α2 − 4µ(r − λ) − α(b0 − 1 ) 1 α2 − 4µ(r − λ) − α(bl − 1 )
2 2 2 2 

· log h p ih p i . (2.14) 
1 α2 − 4µ(r − λ) + α(b0 − 1 ) 1 α2 − 4µ(r − λ) + α(bl − 1 )
2 2 2 2 

Remark. The case (b0, bl) = (1, +∞) is contained in [89]; the case (b0, bl) = (1, 1) 

is contained in [76]; the case (b0, bl) ∈ {1} × (0, ∞) is contained in [74]; the case 

(b0, bl) ∈ (1, ∞) × (0, ∞) is contained in [104]. 

Equation (2.6) may be used to model a population in a river environment. In par-

ticular, setting b0 = 1 indicates no-fux conditions at the river source, while the degree 

of hostility downstream of the habitat can be tuned via the parameter bl. As bl →∞, � �
2µ π −α we see from (2.11) that the critical domain size l∗ → √ − arctan(√ ) , 

4µr−α2 2 4µr−α2 

which is consistent with the case of Dirichlet conditions at x = l, studied in [89] 

(we note that the expression for the critical domain size in [89] should be adjusted 

according to (3.2) in [76]). On the other hand, as bl ↘ 0, we observe that the critical 

domain size l∗ → 0 for all µ > 0. This is consistent with the no-fux condition bl = 0 

at the downstream end, for which it is clear that for any l > 0, (2.6) admits a unique, 

positive, globally asymptotically stable steady state. 
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For the case of a moving habitat on an infnite, one-dimensional domain, the 

critical domain size is given in formula (25) of [10], and is equivalent to (2.26), with q 
4µκ11+ 1+ 

b0 = bl = 
2 

α2 
. 

Remark. As detailed in [64], there is a connection between the critical domain size 

of (2.6) and the Fisher-KPP spreading speed. On the infnite spatial domain R, 

solutions to (2.6) originating from compactly supported, nonnegative, and continuous 

√ 
initial conditions propagate upstream at rate c ∗ = 2 µr − α (this can be seen by 

converting equation (2.6) into the form of Fisher’s equation via the change of variables 

x 7→ x − αt; see the discussion in [64]). Thus, the population spreads upstream 

∗ µ ∈ (α
2 ∗if c > 0 (i.e. 

4r , ∞)), but is washed downstream if c < 0. In the case 

min{b0, bl} ≥ 1 , there is a correspondence with our result for the critical domain size:
2 

by (2.11), if c ∗ > 0 then the critical domain size is fnite, and it is possible for the 

species to persist on a suitably large domain. However, if c ∗ ≤ 0, then the critical 

domain size is infnite, and the species cannot persist. 

Interestingly, if min{b0, bl} < 1 , this correspondence no longer holds. By (2.12),
2 

the critical domain size l∗ can be fnite even if c ∗ < 0. In other words, the species 

will persist if the fnite domain is sufciently large but the same population will even-

tually be washed downstream in the infnite domain. The intuitive reason is that the 

smallness of one of the loss rates b0, bl enhances growth. 

While it is well-known that the principal eigenvalue λ1 is a smooth function of the 

domain size l, the key to the existence of the critical domain size l∗ , however, is the 

invertibility of l 7→ λ1(l). Here we provide a proof of this fact. See also [76] for an 

alternative proof. 
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


Lemma 1. Fix µ, α, r > 0, and b0, bl ≥ 0 such that b0 + bl > 1. Then λ1 = λ1(l) is a 

strictly increasing function such that 

1(i) If min{b0, bl} ≥ , then l 7→ λ1 is a bijection from (0, ∞) to (−∞, r − α
2 
).

2 4µ 

Moreover, 

l = F1(λ1; µ, α, r, b0, bl). (2.15) 

(ii) If min{b0, bl} < 1 , then l 7→ λ1 is a bijection from (0, ∞) to
2 

(−∞, r − α
2 min{b0,bl}(1−min{b0,bl}) 

µ ). Moreover,  F1(λ1), λ1 < r − α
2  4µ 

µ(b0+bl−1)l = − , λ1 = r − α
2 

(2.16)α(b0− 1 )(bl− 1 ) 4µ  
2 2 

r − α
2 
< λ1 < r − α

2 min{b0,bl}(1−min{b0,bl})F2(λ1), .
4µ µ 

Proof. Suppose b0 + bl > 1, then thanks to Proposition 1, the elliptic problem (2.10) 

has a unique principal eigenvalue λ1 ∈ R and positive eigenfunction ψ for each l ∈ 

(0, ∞). Thus l 7→ λ1(l) is a mapping from (0, ∞) to R. To establish that this is 

a bijection, we derive in each case an expression for l depending on λ1. First, let 

ψ = e − 
2 
α
µ xφ. Then (2.10) becomes ( 

µψxx + (r − α 
4µ 

2 − λ1)ψ = 0, 0 < x < l, 
(2.17)

µψx(0) − α(b0 − 
2
1 )ψ(0) = µψx(l) + α(bl − 

2
1 )ψ(l) = 0. 

Claim 1. If λ1 ∈ (−∞, r − α 
4µ 

2 
), then l = F1(λ1). 

Indeed, suppose λ1 < r − α 
4µ 

2 
for some l > 0. Then by solving the frst equation of 

(2.17), ψ has the form 

�p �4µ(r − λ1) − α2 

ψ = A cos (x − η) , (2.18)
2µ � � 

where η ∈ − µ√ π , µ√ π . 
4µ(r−λ1)−α2 4µ(r−λ1)−α2 
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Now from the boundary conditions, we compute p �p �α(b0 − 1 ) ψx(0) 4µ(r − λ1) − α2 4µ(r − λ1) − α2 

− 2 = − = tan (−η) (2.19) 
µ ψ(0) 2µ 2µ 

and p �p �α(bl − 
2
1 ) ψx(l) 4µ(r − λ1) − α2 4µ(r − λ1) − α2 

= − = tan (l − η) . (2.20) 
µ ψ(l) 2µ 2µ 

Recall that ψ is positive on [0, l], b0 + bl > 1, we observe that η and l > 0 

are uniquely determined by (2.19) and (2.20). Hence, we may solve for l to obtain 

l = F1(λ1). This proves Claim 1. 

We frst consider the case min{b0, bl} ≥ 1 .
2 

Claim 2. If min{b0, bl} ≥ 1 , then λ1 ∈ (−∞, r − α
2 
).

2 4µ 

Suppose to the contrary that λ1 ≥ r − α 
4µ 

2 
. 

If λ1 = r − α
2 
, then ψ has the form

4µ 

ψ(x) = Ax + B for some A ∈ {0, 1}, and B ≥ 0. (2.21) 

Consider the two boundary conditions of (2.17). Since (b0, bl) ≠ (1
2 , 

1
2 ), we have A ≠ 0, 

1 1 1which in turn implies b0 ≠ and bl ̸= . Hence, min{b0, bl} > and (2.21) holds for
2 2 2 

A = 1 and some B ≥ 0. We may then solve for B using the boundary condition at 

x = 0 to obtain B = µ . The boundary condition at x = l now yields
α(b0− 1 )

2 � � µ 1 1 
l = −B − = −µ + < 0. (2.22)

α(bl − 1 ) α(b0 − 1 ) α(bl − 1 )
2 2 2 

This is a contradiction. 

If λ1 > r − α 
4µ 

2 
, then ψ has the form 

�p � �p �α2 − 4µ(r − λ1) α2 − 4µ(r − λ1)
ψ(x) = A cosh x + B sinh x . 

2µ 2µ 
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By substituting into the boundary conditions, we fnd p�p �α2 − 4µ(r − λ1) 2α(b0 + bl − 1) α2 − 4µ(r − λ1)
tanh l = − . (2.23)

2µ α2 − 4µ(r − λ1) + 4α2(b0 − 1
2 )(bl − 1

2 ) �√ � 
α2−4µ(r−λ1)

But this implies tanh l < 0, which cannot occur for any l > 0. This
2µ 

proves Claim 2. 

Claim 3. If min{b0, bl} ≥ 1 , the mapping l 7→ λ1(l) is a homeomorphism from (0, ∞)
2 

to (−∞, r − α 
4µ 

2 
). In fact, l 7→ λ1(l) is strictly increasing. 

By Claim 2, the range of the mapping l 7→ λ1(l) is contained in (−∞, r − α 
4µ 

2 
). 

It then follows from Claim 1 that it is a homeomorphism. Indeed, the mapping is 

injective since if λ1(l) = λ1(l̃) = λ̂ for some λ̂ ∈ (−∞, r − α 
4µ 

2 
), then Claim 1 implies 

˜ ˆ ˆthat l = l = F1(λ̂). It is surjective, since for any λ ∈ (−∞, r − α 
4µ 

2 
), we have λ1(l̂) = λ, 

where l̂ = F1(λ̂) > 0. Indeed, the eigenfunction given by (2.18) with λ1 = λ̂ is 

positive on [0, ̂l]. That λ1(l̂) = λ̂ then follows from the uniqueness of the principal 

eigenvalue. Thus l 7→ λ1(l) is bijective, and the inverse is given by F1. Finally, 

l 7→ λ1(l) is continuous since F1 is. Now it follows from l = F1(λ1(l)) and (2.13) that 

λ1(l) ↗ r − α 
4µ 

2 
as l → +∞ and λ1(l) ↘ −∞ as l ↗ 0. The mapping l 7→ λ1(l), being 

a homeomorphism of (0, ∞) → (−∞, r − α 
4µ 

2 
), must be strictly increasing. This shows 

Claim 3. Together, Claims 1, 2, and 3 establish part (i) of Lemma 1. 

Next, we discuss the case min{b0, bl} < 1 .
2 

1Claim 4. If 0 < min{b0, bl} < , then λ1 ∈ (−∞, r − α
2 min{b0,bl}(1−min{b0,bl}) ).

2 µ 

Suppose that λ1 > r − α 
4µ 

2 
. (If not, there is nothing to prove, since 

r − α
2 min{b0,bl}(1−min{b0,bl}) 

µ > r − α 
4µ 

2 
). Then, since 0 < tanh(x) < 1 for x > 0, we 
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observe from (2.23) that p
2α(b0 + bl − 1) α2 − 4µ(r − λ1)

0 < − < 1. 
α2 − 4µ(r − λ1) + 4α2(b0 − 1

2 )(bl − 1
2 ) 

Since b0 + bl > 1, this implies 

p
α2 − 4µ(r − λ1) + 4α

2(b0 − 
1
)(bl − 

1
) < −2α(b0 + bl − 1) α2 − 4µ(r − λ1) < 0. 

2 2 
(2.24) 

In particular, since the right hand side of (2.24) is negative, we note that 

α2 1 1 
µ(r − λ1) > [1 + 4(b0 − )(bl − )] > α2 max{b0, bl}(1 − max{b0, bl}), (2.25)

4 2 2 

where we used (b0 − 1 )(bl − 1 ) > (1 − max{b0, bl})(max{b0, bl} − 1 ). After some 
2 2 2 2 

calculations, (2.24) implies that 

[µ(r − λ1) − α2 min{b0, bl}(1 − min{b0, bl})] 

· [µ(r − λ1) − α2 max{b0, bl}(1 − max{b0, bl})] > 0. 

By (2.25), this is only possible if µ(r − λ1) > α2 min{b0, bl}(1 − min{b0, bl}), i.e., 

α2 min{b0, bl}(1 − min{b0, bl})
λ1 < r − , 

µ 

which establishes the claim. 

Claim 5. If λ1 > r − α 
4µ 

2 
, then l = F2(λ1). 

The claim follows by solving for l in (2.23). 

Claim 6. If 0 < min{b0, bl} < 1 , then the mapping l 7→ λ1(l) is a strictly increasing 
2 

homeomorphism from (0, ∞) to (−∞, r − α
2 min{b0,bl}(1 

µ 
−min{b0,bl}) ). 
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


From Claim 4, the range of the mapping l 7→ λ1(l) is contained in (−∞, r − 

α2 min{b0,bl}(1−min{b0,bl}) 
µ ). By (2.13), (2.22), and (2.14), we have:  F1(λ1), λ1 < r − α

2  4µ 
µ(b0+bl−1)l = F3(λ1) := − , λ1 = r − α

2 

α(b0− 1 )(bl− 1 ) 4µ  
2 2 

r − α
2 
< λ1 < r − α

2 min{b0,bl}(1−min{b0,bl})F2(λ1), .
4µ µ 

Note that l is a continuous function of λ1, since 

µ(b0 + bl − 1)
lim F1(λ1) = lim F2(λ1) = − . 

λ1→(r− α
2 
)− λ1↘(r− α

2 α(b0 − 1 )(bl − 1 )) 2 24µ 4µ 

Now the claim follows by similar reasoning as in the case min{b0, bl} ≥ 1 . The
2 

mapping l 7→ λ1(l) is injective, since if λ1(l) = λ1(l̃), then letting λ̂ denote the 

common value, we have l = l̃ = F3(λ̂). The mapping is surjective, since for any 

λ̂ ∈ (−∞, r − α
2 min{b0,bl}(1 

µ 
−min{b0,bl}) ), we have λ̂ = λ1(l̂), where l̂ = F3(λ̂) (note 

F3(λ̂) > 0 since min{b0, bl} < 1 ). That λ̂ = λ1(l̂) follows from Proposition 1, and the
2 

positivity of the associated eigenfunction on [0, ̂l]. Thus, l 7→ λ1(l) is a bijection from 

(0, ∞) to (−∞, r − α
2 min{b0,bl}(1−min{b0,bl}) 

µ ). Moreover, l 7→ λ1(l) is continuous, since 

its inverse F3 is continuous on the interval (−∞, r − α
2 min{b0,bl}(1 

µ 
−min{b0,bl}) ). Since 

l = F3(λ1(l)), it follows from (2.14) that λ ↗ r − α
2 min{b0,bl}(1 

µ 
−min{b0,bl}) as l → +∞, 

and from (2.13) that λ ↘ −∞ as l ↘ 0. Thus, as a homeomorphism from (0, ∞) to 

(−∞, r − α
2 min{b0,bl}(1−min{b0,bl}) 

µ ), the mapping l 7→ λ1(l) is strictly increasing. This 

shows Claim 6. Combined, Claims 1, 4, 5, and 6 prove part (ii). This concludes the 

proof. 

Proposition 2. Fix µ, α, r > 0, and b0, bl > 0 such that b0 + bl > 1. 

(a) If min{b0, bl} ≥ 1 , then the critical domain size is given by
2 ( 

+∞, 0 < µ ≤ α
2 

l ∗ 4r= (2.26)1 
F1(0; µ, α, r, b0, bl), µ > α 

4r 

2 
. 
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


(b) If 0 < min{b0, bl} < 1 , then the critical domain size is given by
2  

0 < µ ≤ α
2 min{b0,bl}(1−min{b0,bl})+∞, 

r α2 min{b0,bl}(1−min{b0,bl}) α2 
F2(0; µ, α, r, b0, bl), < µ < 

l ∗ r 4r 
2 = α(b0+bl−1) α2 (2.27)− , µ = 

4r(b0− 1 )(bl− 1 ) 4r  2 2 
α2 

F1(0; µ, α, r, b0, bl), µ > 
4r . 

Here, F1 and F2 are given in (2.13) and (2.14), respectively. 

Remark. Under the additional assumption that b0 > 1, (2.26)-(2.27) are given in 

[104, Sec. 2.2] in slightly diferent forms. Note that (bu, bd) = (b0 − 1, bl) under their 

notation. 

Remark. For the case of a moving habitat, the critical domain size is given in formula q 
4µκ11+ 1+ 

(25) of [10], and is equivalent to (2.26), with b0 = bl = 
2 

α2 
. 

Proof of Proposition 2. Assertion (a) follows directly from Lemma 1. If µ ≤ α 
4r 

2 
, then 

by Lemma 1(i), the range of l 7→ λ1(l) is contained in (−∞, 0), i.e. λ1 < 0 for all 

l > 0. If µ > α 
4r 

2 
, the critical value l1 

∗ is obtained from setting λ1 = 0 in (2.15). Now l1 
∗ 

is a critical domain size, since by Lemma 1, λ1 = λ1(l) is a strictly increasing function 

of l. 

Similarly reasoning proves assertion (b). Lemma 1(ii) implies that λ1 < 0 for all 

l > 0 if µ ≤ α
2 min{b0,bl}(1−min{b0,bl}) α2 min{b0,bl}(1−min{b0,bl}) 

r . If µ > 
r , then we set λ1 = 0 

in (2.16) to obtain the critical value l2 
∗ . Now l2 

∗ is a critical domain size, since Lemma 

1 implies that λ1 = λ1(l) is a strictly increasing function of l. 

2.2.3 Proof of Theorem 2 

In this section, we consider the critical domain size l∗ for persistence of the species 

u in (2.6). 
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Proof of Theorem 2. We defne ( 
l1 
∗ , min{b0, bl} ≥ 1 

l ∗ 2= (2.28)
l2 
∗ , 0 ≤ min{b0, bl} < 1 .

2 

By Proposition 2, l∗ is the critical domain size of (2.6). It follows from Theorem 5(i) 

that if l > l∗ , then (2.6) has a unique, positive equilibrium θ such that 

lim ∥u(·, t) − θ∥C0([0,l]) = 0 
t→∞ 

for every nonnegative, nontrivial solution u of (2.6). If l ≤ l∗ , then by Theorem 5(ii) 

lim ∥u(·, t)∥C0([0,l]) = 0 
t→∞ 

for every nonnegative solution of (2.6). This establishes Theorem 2. 

2.2.4 Monotonicity of the critical domain size 

We now prove Theorem 3, which establishes the monotone dependence of the 

critical domain size on the difusion coefcient when the difusion rate is large, and, 

given additional assumptions on the boundary loss parameters b0 and bl, provides a 

global characterization of the relationship between the critical domain size and the 

difusion rate. 

Proposition 3. Fix r, α > 0, and b0, bl ≥ 0 such that b0 + bl > 1. Let l∗(µ, b0, bl) be 

given by (2.28). � � 
α2 q π(a) Fix µ > 
4r . Then l∗(µ, b0, bl) is the frst positive root in 0, of the 

rτ− α
2τ2 
4 

equation r 
α2τ 2 �r − τ α

2 − τα2(b0 − 1 )(bl − 1 )� 
4 2 2 g( rτ − l ∗ ) = l ∗ , (2.29)

4 α(b0 + bl − 1) 

where g(s) = s cot s and τ = 
µ 
1 . 
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(b) Suppose that (b0 + bl − 1)2 ≥ 0.941(b0 + bl − 1 − 2b0bl)2 , and that there exists 

µ0 ≥ α
2 ∂l∗ 
for which (µ0, b0, bl) = 0.4r ∂µ 

α2 ∂2l∗ 
(i) If min{b0, bl} ≥ 1 , then µ0 > and (µ0, b0, bl) > 0.

2 4r ∂µ2 

1 ∂2l∗ α2 
(ii) If min{b0, bl} < , then (µ0, b0, bl) > 0 if µ0 > , and

2 ∂µ2 4r 

∂2l∗ α2 
limµ↘µ0 (µ0, b0, bl) > 0 if µ0 = .

∂µ2 4r 

1(c) If min{b0, bl} < and max{b0, bl} ≤ 1, then ∂l
∗ 
(µ0, b0, bl) < 0 for

2 ∂µ 

α2 α2 
min{b0, bl}(1 − min{b0, bl}) < µ < . 

r 4r 

Proof of Proposition 3(a). Recall from (2.13) that l∗ satisfes � �l∗
p
4µr − α2 � 2α(bl − 1

2 ) 
�−2α(b0 − 1

2 ) = arctan p − arctan p . 
2µ 4µr − α2 4µr − α2 

1+tan(x) tan(y) πUsing the identity cot(x − y) = , for x, y ∈ (−π , ) and x − y ∈ (0, π),
tan(x)−tan(y) 2 2 

we deduce that p� l∗ �4µr − α2 4µr − α2 − 4α2(b0 − 1 )(bl − 1 ) 
cot = p 2 2 . 

2µ 2α(b0 + bl − 1) 4µr − α2 

Thus, p p� � �r − α
2 − α

2 �l∗ 4µr − α2 l∗ 4µr − α2
4µ µ (b0 − 

2
1 )(bl − 

2
1 ) 

cot = l ∗ ,
2µ 2µ α(b0 + bl − 1) 

and substituting τ = 
µ 
1 gives the desired result. 

Proof of Proposition 3(b). Fix b0, bl ≥ 0 such that (b0 + bl − 1)2 ≥ 0.941(b0 + bl − 1 − 

2b0bl)
2 . Denote τ0 := 1 , and set 

µ0 r 

L(τ) := l ∗ (µ, b0, bl), 
′ := 

∂ 
∂τ 
, M(τ) := rτ − 

α2τ 2 

,
4 

and 

N(τ) := 

� � 
1 r − τα2 + (b0 − 1 )(bl − 1 )
4 2 2 . 
α(b0 + bl − 1) 
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By Proposition 3(a), l∗ satisfes (2.29) for µ > α 
4r 

2 
. Diferentiating (2.29) with respect 

to τ , we have 

g ′ (ML)(M ′ L + ML ′ ) = L ′ N + LN ′ for τ ∈ (0, 
4r 
). (2.30)

α2 

Diferentiating again and rearranging, we obtain 

L ′′ (N − g ′′ (ML)M) = g ′′ (ML)(M ′ L + ML ′ )2 + g ′ (ML)(M ′′ L + 2M ′ L ′ ) − 2L ′ N 
(2.31) 

for τ ∈ (0, 
α 
4r 
2 ). 

Assume min{b0, bl} ≥ 1 . Then clearly µ0 > α2 
, since l∗ is fnite if and only if

2 4r 

α2 4r µ > (Theorem 2). Thus, we have L ′ (τ0) = 0 for some τ0 ∈ (0, ), so that setting
4r α2 

τ = τ0 in (2.31), we obtain 

h i 
L ′′ (N − g ′′ (ML)(M ′ L)2 ′′ L) ′ (ML)M) = g + g ′ (ML)(M . (2.32) 

τ=τ0 

2r 2rWe frst consider the case τ0 = 
α2 , where M ′ (τ0) = 0. Letting τ0 = 

α2 in (2.30), � � 
4 2 )(bl− 1 )+(b0− 1 

2we have N ′ (τ0) = −α 
1 

= 0, which implies that (b0 − 1 )(bl − 1 ) = −1 .
b0+bl−1 2 2 4 

r ′′ ( 2r ) = −α3 2rMoreover, we compute M(
α 
2r 
2 ) = 

α , and M 
α2 4r , so that by setting τ0 = 

α2 in 

(2.31), we obtain " # " # 
′′ L α4g ′ (ML)M g ′ (ML)L 

L ′′ = = − 
N − Mg′(ML) 4r2 1 −2(b0− 1 )(bl− 1 )

2 2 2
2r 2r− g ′(ML)τ= τ =b0+bl−1α2 α2" # 

α4 g ′ (ML)L 
= − 1 . 

4r2 − g ′(ML) 
τ =b0+bl−1 2r 

α2 

Since g ′ (x) < 0 for x ∈ (0, π), it follows that L ′′ (
α 
2r 
2 ) > 0. This is equivalent to 

∂2l∗ 
(α

2 α2 
) > 0, and establishes assertion (i) for µ0 = .

∂µ2 2r 2r 

If τ0 ̸= 
α 
2r 
2 , we proceed in steps. 
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��

Step 1. We show that for τ = τ0, � �2h � �iN ′ L g ′ (ML) α2 

L ′′ (N − g ′ (ML)M) = g ′′ (ML) − g ′ (ML)2 + 1 . 
g ′(ML) ML 4(N ′)2 

(2.33) 

Setting τ = τ0 in (2.30), we have � 1 �� �N ′ (τ0) + (b0 − 1 )(bl − 1 ) 2M(τ0)4 2 20 > g ′ (ML) = = −α . (2.34)
τ =τ0 M ′(τ0) b0 + bl − 1 r − α

2τ0 
2 

Further, we note that �r − α
2τ �′ � �α2 (M ′ )2 

M ′′ = 2 = − + . (2.35)
2M 4M M 

Now recalling (2.32) and applying (2.34) and (2.35), we compute 

L ′′ (N − g ′′ L) ′ (ML)M) = g ′′ (ML)(M ′ L)2 + g ′ (ML)(M � ′ L �2 � α2 ′ )2 �N (M 
= g ′′ (ML) − g ′ (ML) + L 

g ′(ML) 4M M � �2h � �iN ′ L g ′ (ML) α2 

= g ′′ (ML) − g ′ (ML)2 + 1 
g ′(ML) ML 4(N ′)2 

for τ = τ0. 

Step 2. Next, we observe h i 
N − g ′ (ML)M > 0. (2.36) 

τ=τ0 

Recalling (2.34), a direct computation yields � �h i 1α2τ0 + (b0 − 1 )(bl − 1 ) + r − α
2τ0 

4 2 2 2N − g ′ (ML)M = . 
ατ=τ0 
r (b0 + bl − 1)(r − α

2 

2 
τ0 ) 

1Since b0 + bl − 1 > 0, (2.34) implies that + (b0 − 1 )(bl − 1 ) and r − α
2τ0 have the

4 2 2 2 

same sign, from which (2.36) follows. 

Step 3. Finally, we show that h � �i g ′ (ML) α2 

g ′′ (ML) − g ′ (ML)2 + 1 > 0. (2.37)
ML 4(N ′)2 τ=τ0 

34 



By Lemma 3, we have 

′′ (s) − 
g ′ (s) 

g [Cg ′ (s)2 + 1] > 0 for 0 < s < π 
s 

if C ≥ 0.941. Thus, (2.37) holds if 
4(N
α2 

′ )2 ≥ 0.941, which follows from the assumption 

(1 − b0 − bl)2 ≥ 0.941(1 − b0 − bl + 2b0bl)2 . 

Together, (2.33), (2.36), and (2.37) imply that L ′′ (τ0) > 0. This concludes the 

proof of assertion (i). 

1To prove assertion (ii), we assume min{b0, bl} < and suppose that ∂l
∗ 
(µ0, b0, bl) = 

2 ∂µ 

0 for some µ0 ≥ α
2 
. If µ0 > α

2 
, then l∗ satisfes (2.29), so that the proof of assertion

4r 4r 

α2 4r(i) also holds for (ii). Thus, we need only consider the case µ0 = 
4r , i.e., τ0 = 

α2 . 

We use the expressions 

α2 

′ r − α 
2 

2τ 
′′ 4 + (M ′ )2 

M = and M = − 
2M M 

for τ ∈ (0, 
α 
4r 
2 ) to rewrite (2.31) as follows: 

L ′′ (N − g
g ′ (ML) α2 

′2′ (ML)M) = g ′′ (ML)(M ′ L + ML ′ )2 − ( + M )L2 

ML 4 
g ′ (ML) α2τ 

+ (r − )LL ′ − 2L ′ N ′ 
ML 2h � �i g ′ (ML) α2 

= (M ′ L)2 g ′′ (ML) − + 1 
ML 4(M ′)2 

g ′ (ML) α2τ 
+ (r − )LL ′ 

ML 2h iα2τ ′ + g ′′ (ML) (r − )L ′ L + (ML ′ )2 − 2L ′ N (2.38)
2 

for τ ∈ (0, 
α 
4r 
2 ). 

Denoting the right hand side of (2.38) by R(τ), we will show that both 

� � 
lim N − g ′ (ML)M > 0 and lim R(τ) > 0. 

τ → 4r − − 
τ → 4r 

α2 α2 
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Thus, sending τ → 
α 
4r 
2 

− 
in (2.38), we conclude that 

L ′′ (τ) > 0,lim 
τ → 4r − 

α2 

as desired. 

′ (s) 4 ′′ (s) = −2 − 12Using the expansions g = −2 − s2 + o(s3) and g s2 + o(s3), we 
s 3 45 3 45 

compute 

� � −4r(b0 − 1 )(bl − 1 )
lim N − g ′ (ML)M = 2 2 > 0, 

τ → 4r − α(b0 + bl − 1) 
α2 

and 

h i� g ′ (ML)� α2 

lim 
− 
R(τ) = lim 

− 
(M ′ L)2 g ′′ (ML) − + L2 

τ → 4r τ → 4r ML 6 
α2 α2 h � ′ (ML) � ig ′′ (ML) − g 

α2 
ML L2 = lim 

− 
L4(2r − α2τ)2 + 

τ → 4r 16(ML)2 6 
α2 h �α2 2 �i4r 

L2 L2 = − 
6 90 τ = 4r 

α2 � �2� �1 α2(b0 + bl − 1) (b0 + bl − 1)2 

= 1 − . 
96 r(b0 − 1 )(bl − 1 ) 60(b0 − 1 )2(bl − 1 )2 

2 2 2 2 

α(b0+bl−1)(We recall from (2.27) that L( 4r ) = − ).
α2 4r(b0− 1 )(bl− 1 )

2 2 � � 
By Lemma 4, L ′ ( 4r ) = 0 only if (b0 +bl −1)2 = 12(b0− 1 )(bl − 1 ) 1 +(b0− 1 )(bl − 1 ) .

α2 2 2 4 2 2 

That lim − R(τ) > 0 now follows by observing that
τ→ 4r 

α2 

(b0 + bl − 1)2 1
4 + (b0 − 1

2 )(bl − 1
2 )1 − = 1 − 

60(b0 − 1 )2(bl − 1 )2 5(b0 − 1 )(bl − 1 )
2 2 2 2 

4(b0 − 1 )(bl − 1 ) − 1 
2 2 4= > 0. 

5(b0 − 1
2 )(bl − 1

2 ) 

This concludes the proof. 

Proof of Proposition 3(c). We will use an argument similar to that of Proposition 2.2 � � 
α2 α2 

in [74]. By (2.27), l∗ = F2(0; µ, b0, bl) for µ ∈ min{b0, bl}(1 − min{b0, bl}), . 
r 4r 

36 



Thus, it sufces to show that F2(0; µ, b0, bl) is a decreasing function of µ for µ ∈ � � 
α2 α2 
min{b0, bl}(1 − min{b0, bl}), . 

r 4r 

For ease of notation, we denote 

µ k1
F (µ) := F2(0; µ, b0, bl) = log ,

2M k2 p � �� � � 
where M := 1 α2 − 4µr, k1 := M − α(b0 − 1 ) M − α(bl − 1 ) , and k2 := M +

2 2 2 �� � 
α(b0 − 

2
1 ) M + α(bl − 

2
1 ) . 

Suppose that bl < 1 , b0 ≤ 1. We will show that F ′ (µ) < 0 for µ ∈ (α
2bl(1−bl) , α

2 
).

2 r 4r 

We compute � � 
2M2 + µr k1 µrα(b0 + bl − 1) α2(b0 − 1 )(bl − 1 ) − M2 

F ′ (µ) = log + 2 2 

4M3 k2 2M2k1k2�1 k1 
= (2M2 + µr)(k1k2) log 
4M3k1k2 k2� 

α2(b0 − 
1 1

) − M2 
�� 

+ 2Mµrα(b0 + bl − 1) )(bl − . (2.39)
2 2 

α2bl(1−bl) α2 
We note that 4M3k1k2 > 0 for µ ∈ ( 

r , 
4r ). 

We now consider the numerator of (2.39) as a function, h, of bl. Diferentiating 

in bl, we obtain 

� 1 �� 1 k1 � 
h ′ (bl) = 2α(2M

2 + µr) α2(b0 − )2 − M2 M + α(bl − ) log 
2 2 k2 � 1 1 1 � 

+ 2Mµrα 2α2(b0 − )(bl − ) − M2 + α2(b0 − )2 ,
2 2 2 � 1 � 

h ′′ (bl) = 2α
2(2M2 + µr) α2(b0 − )2 − M2 

2 h ik1 1 2αM(α2(b0 − 1
2 )

2 − M2) 1 · log + (bl − ) + 4Mµrα3(b0 − ),
k2 2 k1k2 2� �2 

8α3M(2M2 + µr) α2(b0 − 1 )2 − M2 

h ′′′ (bl) = 2 

(k1k2)2 h �i1 � 1 · k1k2 + α2(bl − )2 M2 − α2(b0 − )2 . 
2 2 
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For µ ∈ (α
2bl(1 

r 
−bl) , α 

4r 

2 
), we have 

� � α2 

k1k2 + α2(bl − 
1
)2 M2 − α2(b0 − 

1
)2 = ( − µr)(α2b0(1 − b0) − µr)

2 2 4 
α2 

< ( − µr)(α2bl(1 − bl) − µr)
4 

< 0. 

α2bl(1−bl) α2 1Thus, for µ ∈ ( , ), 0 < bl < , and b0 ≤ 1, we have 
r 4r 2 

h ′′′ (bl) < 0 h ′′ (bl) < h ′′ (1 − b0) = 2α
3M(b0 − 

1 
=⇒ )(4µr − α2) < 0 

2 

=⇒ h ′ (bl) < h ′ (1 − b0) = 4α
3M3b0(b0 − 1) ≤ 0 

=⇒ h(bl) < h(1 − b0) = 0. 

α2bl(1−bl) α2 
It follows from (2.39) that F ′ (µ) < 0 for µ ∈ ( 

r , 
4r ). The proof for the case 

0 < b0 < 
2
1 , bl ≤ 1 is similar, and we omit the details. 

Proof of Theorem 3. Using the same notation as in the proof of Proposition 3(b), we 

will show the existence of 

2 ∂l
∗ 

−L ′ (0) = lim µ , (2.40) 
µ→∞ ∂µ 

and use this relation to deduce the eventual monotonicity of l∗(µ). 

From (2.30), we have hr − τ α
2 − τα2(b0 − 1 )(bl − 1 )i h 1 + (b0 − 1 )(bl − 1 )i 

L ′ 4 2 2 4 2 2− αL 
α(b0 + bl − 1) b0 + bl − 1 h i g ′ (ML) L2 α2τ 

= (r − ) + M2LL ′ (2.41)
ML 2 2 

4r α(b0+bl−1)for τ ∈ (0, 
α2 ), where g(s) = s cot s. Recalling that limµ→∞ l

∗(µ) = 
r and 

g ′ (s) 
s = −

3
2 + o(1), we let τ → 0 to obtain � �α3(b0 + bl − 1) 1 1 1 (b0 + bl − 1)2 

L ′ (0) = 
2 

+ (b0 − )(bl − ) − . 
r 4 2 2 3 
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


To prove part (a), suppose G(b0, bl) > 0. Then L ′ (0) > 0, so (2.40) implies that 

µ 7→ l∗(µ) is strictly decreasing for µ ≫ 1. Suppose, in addition, that (b0 + bl − 1)2 ≥ 

0.941(b0 + bl − 1 − 2b0bl)2 . Then if min{b0, bl} ≥ 1 , Proposition 3(b)(i) implies
2 

that ∂ l∗(µ, b0, bl) < 0 for all µ > µ̂, where µ̂ is given in (2.8). If min{b0, bl} < 1 ,
∂µ 2 

max{b0, bl} ≤ 1, then Proposition 3(b)(ii) and (c) imply that ∂ l∗(µ, b0, bl) < 0 for all
∂µ 

µ > µ̂. This proves (a). 

If G(b0, bl) < 0, then L ′ (0) < 0, so that µ 7→ l∗(µ) is strictly increasing for 

µ ≫ 1. Since l∗(µ) → ∞ as µ ↘ µ̂ (Theorem 2), l∗(µ) obtains a global minimum 

for some µ̃ ∈ (µ̂, ∞). Suppose also that (b0 + bl − 1)2 ≥ 0.941(b0 + bl − 1 − 2b0bl)2 . 

If min{b0, bl} ≥ 1 , then Proposition 3(b)(i) implies that µ̃ is unique, ∂ l∗(µ) < 0 for
2 ∂µ 

µ ∈ (µ̂, µ̃), and 
∂µ 
∂ l∗(µ) > 0 for µ > µ̃. This proves (b), and completes the proof. 

2.3 Proof of competition dynamics 

We consider the equation: 

 
ut = µuxx − αux + u(r − u

K 
+v ), 0 < x < l, t > 0, 

vt = νvxx − αvx + v(r − u+v ), 0 < x < l, t > 0, K µux(0, t) − αu(0, t) = (b0 − 1)αu(0, t), t > 0 
(2.42) 

µux(l, t) − αu(l, t) = −blαu(l, t), t > 0 

νvx(0, t) − αv(0, t) = (b0 − 1)αv(0, t), t > 0 
νvx(l, t) − αv(l, t) = −blαv(l, t), t > 0, 

in which the species u and v difuse at rates µ > 0 and ν > 0, respectively, and 

α, r, K, b0, bl are positive constants. 
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We note that (0, 0) is a trivial equilibrium of system (2.42), while (θµ(x), 0) and 

(0, θν (x)) are semi-trivial equilibria, where θµ(x) is the unique positive solution (when-

ever it exists) of the equation  µθxx − αθx + (r − θ/K)θ = 0, 0 < x < l 

µθx(0) − αθ(0) = (b0 − 1)αθ(0) (2.43)
µθx(l) − αθ(l) = −blαθ(l). 

The linear stability of the equilibrium solution (θµ, 0) is given by the sign of the 

principal eigenvalue Λ(µ, ν) of the following problem; see, e.g., [82, 85]:   − αΨx + (r − θµ/K)Ψ = ΛΨ, 0 < x < l 

νΨx(0) − αΨ(0) = (b0 − 1)αΨ(0) 
νΨxx 


νΨx(l) − αΨ(l) = −blαΨ(l). 

We perform the change of variables ξ = 
µ 
1 , τ = 

ν 
1 , Λ(ξ, τ) = Λ(µ, ν). Then Λ(ξ, τ) 

is the principal eigenvalue of: ( h i 
αb0ξx 

Φxx − ατ(1 − 2b0)Φx + τ α2b0τ(b0 − 1) + (r − e
K η) Φ = τΛΦ, 

Φx(0) = Φx(l) + τα(b0 + bl − 1)Φ(l) = 0, 

where the frst equation holds for 0 < x < l, Φ = e−αb0τxΨ, and ηξ(x) is the unique 

positive solution of ( h i 
αb0ξx 

ηxx − αξ(1 − 2b0)ηx + ξ α2b0ξ(b0 − 1) + (r − e
K η) η = 0, 0 < x < l 

ηx(0) = ηx(l) + ξα(b0 + bl − 1)η(l) = 0. 

Lemma 2. Fix α > 0, r > 0, b0, bl and r such that b0 +bl > 1, and 0 ≤ α(b0+ 
r
bl−1) < l. 

(a) If Λτ (0, 0) < 0, then there exists µ > 0 such that if µ > ν ≥ µ, then (θµ, 0) 

is globally asymptotically stable among all nonnegative, nontrivial solutions of 

(2.42). 

(b) If Λτ (0, 0) > 0, then there exists µ > 0 such that if µ > ν ≥ µ, then (0, θν ) 

is globally asymptotically stable among all nonnegative, nontrivial solutions of 

(2.42). 
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


Proof. Our proof follows the arguments in Lemma 6.1 of [45]. First, we show that if 

Λτ (0, 0) ̸= 0, then (2.42) has no positive equilibria for µ, ν sufciently large. Other-

wise, let µj →∞ and νj →∞ such that for each j ≥ 1, (uj , vj ) is a positive solution 

to (2.42) with (µ, ν) = (µj , νj ). Then for (ξj , τj ) = ( 1 , 1 ), we observe that (ũj , ṽj )µj νj 

satisfes the equation:  h i 
ũj,xx − αξj (1 − 2b0)ũj,x + ξj α2b0ξj (b0 − 1) + (r − uj 

K 
+vj ) ũj = 0, 0 < x < lh i 

ṽj,xx − ατj (1 − 2b0)ṽj,x + τj α2b0τj (b0 − 1) + (r − uj 

K 
+vj ) ṽj = 0, 0 < x < l 

ũj,x(0) = ũj,x(l) + ξj α(b0 + bl − 1)ũj(l) = 0 ṽj,x(0) = ṽj,x(l) + τj α(b0 + bl − 1)ṽj (l) = 0, 
(2.44) 

−αb0ξj x −αb0τj xwhere ũj = e uj and ṽj = e vj , j ≥ 1. 

Denoting by Λ̃(τ ; h(·)) the principal eigenvalue of ( h i 
ϕxx − ατ(1 − 2b0)ϕx + τ α2b0τ(b0 − 1) + (r − h

K 
(x) ) ϕ = τΛϕ, 0 < x < l 

ϕx(0) = ϕx(l) + τα(b0 + bl − 1)ϕ(l) = 0, 

we observe from (2.44) that 

Λ(˜ ξj ; uj + vj ) = 0 = Λ̃(τj ; uj + vj ) for j ≥ 1. 

Now by Rolle’s theorem, there exists τj 
′ → 0 such that 

Λ̃ 
τ (τj 

′ ; uj + vj ) = 0, (2.45) 

′ where Λ̃ 
τ is the partial derivative of Λ̃ with respect to τ and τj lies between ξj and 

τj for j ≥ 1. 

Claim 7. By passing to a subsequence, 

ũj
ũj → Cu, and Ũ 

j := → 1 uniformly in [0, l],
∥ũj ∥∞ 

where Cu ≥ 0 is a constant. A similar conclusion holds for ṽj and Ṽ 
j = ṽj .∥ṽj ∥∞ 
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


First, we observe that ∥ũj ∥∞ ≤ C, ∥ṽj ∥∞ ≤ C, where C = max{rK, [r+α2b0ξ(b0 − 

1)]K}. Indeed, ũj is a subsolution and C is a supersolution of the equation 

αb0ξxe 
uxx − αξ(1 − 2b0)ux + ξ[α2b0ξ(b0 − 1) + (r − u)]u = 0, 0 < x < l. 

K 

That ∥ũj ∥∞ ≤ C now follows by applying the maximum principle. By similar rea-

soning, we conclude that ∥ṽj ∥∞ ≤ C. 

Now, by standard elliptic estimates, we may pass to a subsequence and assume 

ũj and ṽj converge weakly in W 2,p(0, l), p > 1, to some limit functions ũ and ṽ, 

respectively. 

Letting ξj → 0 in (2.44), we obtain 

ũxx = 0 for 0 < x < l and ũx(0) = 0 = ũx(l), 

so that ũ = Cu for some constant Cu ≥ 0. 

Dividing the equations for ũj and ṽj by ∥ũj ∥∞ and ∥ṽj ∥∞, respectively, we observe 

that Ũ 
j and Ṽ 

j satisfy  h i 
Ũ 
j,xx − αξj (1 − 2b0)Ũ 

j,x + ξj α2b0ξj (b0 − 1) + (r − uj +vj ) Ũ 
j = 0, 0 < x < lh K i 

Ṽ 
j,xx − ατj (1 − 2b0)Ṽ 

j,x + τj α2b0τj (b0 − 1) + (r − uj 

K 
+vj ) Ṽ 

j = 0, 0 < x < l 

˜ ˜ Uj (l) = 0Uj,x(0) = Uj,x(l) + ξj α(b0 + bl − 1) ̃   ̃ ˜Vj,x(0) = Vj,x(l) + τj α(b0 + bl − 1)Ṽ 
j (l) = 0. 

(2.46) 

By the same reasoning as for ũj , we observe that Ũ 
j converges to a constant as j →∞, 

which must be 1. 

Similarly, we conclude that ṽj → Cv for some constant Cv ≥ 0, and that Ṽ 
j → 1 

uniformly in [0, l]. � � 
r − α(b0+bl−1)Claim 8. Cu + Cv = K 

l . 
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First, we show that Cu + Cv > 0. Dividing the frst equation in (2.46) by Ũ 
j and 

integrating by parts over (0, l), we have � � �l Z 
uj + vj 

� 
ξj − α(1 − 2b0) log(Ũ 

j ) x=0 
+ α2b0ξj (b0 − 1) + (r − ) dx 

K" #l Z � ˜ �2Ũ 
j,x Uj,x 

= − − dx ≤ ξj α(b0 + bl − 1), 
Ũ 
j Ũ 

j
x=0 

where the inequality arises from the boundary conditions of Ũ 
j . Since uj + vj → 

Cu + Cv uniformly and Ũ 
j → 1 uniformly, we may divide the above inequality by ξj 

and take the limit as j →∞ to obtain 

Cu + Cv
(r − )l ≤ α(b0 + bl − 1). 

K 

α(b0+bl−1)Since l > 
r , this implies Cu + Cv > 0. 

Now integrating the equations for ũj and ṽj over (0, l), and applying the boundary 

conditions, we have Z h i uj + vj
ξj α(b0 − bl)ũj (l) + αξj (1 − 2b0)ũj (0) + ξj α2b0ξj (b0 − 1) + (r − ) ũj dx 

K 

= 0, Z h i uj + vj
τj α(b0 − bl)ṽj (l) + ατj (1 − 2b0)ṽj (0) + τj α2b0τj(b0 − 1) + (r − ) ṽj dx 

K 

= 0. 

Dividing the frst and second equations by ξj and τj , respectively, and passing to the 

limit, we obtain 

Cu + Cv Cu + Cv
α(1 − b0 − bl)Cu + l(r − )Cu = α(1 − b0 − bl)Cv + l(r − )Cv = 0. 

K K 

Adding these equations yields h iCu + Cv
(Cu + Cv) α(1 − b0 − bl) + l(r − ) = 0. 

K 
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� � 
r − α(b0+bl−1)Since Cu + Cv > 0, this implies Cu + Cv = K 

l . 

Now by the continuous dependence of Λ̃(τ, h) on τ and h, letting j →∞ in (2.45) 

gives 

� � α(b0 + bl − 1)�� 
˜Λτ (0, 0) = Λτ 0, K r − = 0,

l � 
where the the smooth extension of ηξ up to ξ = 0 is given by the constant K r − 

α(b0+bl−1) 
l ] (see Remark 5.1 in [45]). But this contradicts our assumption Λτ (0, 0) ̸= 0. 

Thus, if Λτ (0, 0) ̸= 0, then (2.42) has no positive equilibria for µ, ν sufciently large. 

To prove part (a), we observe that there exists δ1 > 0 such that for (ξ, τ) ∈ [0, δ1]2 , 

(2.42) has no positive equilibrium and Λτ (ξ, τ) < 0, i.e. 

1 
Λν (µ, ν) > 0 for all µ, ν ≥ . 

δ1 

Since Λ(µ, µ) = 0 for µ > 0, this implies 

1 
Λ(ν, µ) > 0 > Λ(µ, ν) for µ > ν ≥ . 

δ1 

So (θµ, 0) is linearly stable and (0, θν ) is linearly unstable. Since (2.42) has no positive 

equilibria, we conclude by Theorem B of [49] and Theorem 1.3 of [59] that (θµ, 0) is 

globally asymptotically stable among all nonnegative, nontrivial solutions of (2.42). 

The proof of part (b) follows similar reasoning, and we omit the details. 

Theorem 6. Assume b0 + bl > 1, and recall the defnition of G(b0, bl) in (2.9). 

α(b0+bl−1)(a) If G(b0, bl) > 0 and l > 
r , there exists d > 0 such that for µ > ν ≥ d, the 

steady state (θµ, 0) is globally asymptotically stable. 

α(b0+bl−1)(b) If G(b0, bl) < 0 and l > 
r , there exists d > 0 such that for µ > ν ≥ d, the 

steady state (0, θν ) is globally asymptotically stable. 
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2 

3 

α(b0+bl−1)Proof. Let l > . Theorem 2 implies that there exists µ > 0 such that (2.43) 

If G(b0, bl) > 0, then by Lemma 6, we have Λτ (0, 0) = −α2 + (b0 − 1 )(bl − 1 ) − 

r 

has a positive solution θµ for all µ > µ. Thus, Λ is well-defned for all (ξ, τ) ∈ [0, 1/µ]2 . � 
1 
4 2 �(b0+bl−1)2 ′ ′ < 0. Now by Lemma 2(a), there exists µ > µ such that for µ > ν ≥ µ 

, (θµ, 0) is globally asymptotically stable among all nonnegative, nontrivial solutions 

of (2.42). This proves assertion (a). � 
If G(b0, bl) < 0, then Lemma 6 implies Λτ (0, 0) = −α2 1 + (b0 − 1 )(bl − 1 ) −

4 2 2 �
(b0+bl−1)2 ′ ′ 

3 > 0. By Lemma 2(b), there exists µ > µ such that for µ > ν ≥ µ , (0, θν ) 

is globally asymptotically stable among all nonnegative, nontrivial solutions of (2.42). 

This proves assertion (b). 

2.4 Appendix 

2.4.1 Computations for Prop. 3(b) 

Lemma 3. Let g(s) = s cot s, and C ≥ 0.941. Then 

g ′ (s)′′ (s) −g [1 + Cg ′ (s)2] > 0 (2.47) 
s 

for 0 < s < π. 

Proof. Our proof is similar to that of Lemma A.12 of [45]. There, the claim is shown 

for C ≥ 1, so we may fx 0.941 ≤ C < 1. Observe g ′ (s) = cot s − s csc2(s) and 

g ′′ (s) = 2 csc2(s)(g(s) − 1). We compute 

1 + Cg ′ (s)2 = 1 + C(cot2(s) − 2s cot(s) csc2(s) + s 2 csc 4(s)) � � 
= (1 − C) + C 1 + cot2(s) − 2s cot(s) csc2(s) + s 2 csc 4(s) � � 
= (1 − C) + C csc 2(s) (g − 1)2 + s 2 . 

45 



−g ′ (s)By the above expression, and since 
s ≥ 2

3 for s ∈ (0, π) (see [45] Lemma A.12), 

we observe 

g ′ � � g ′ h � �i 
g ′′ − 1 + Cg ′2 = 2 csc2(s)(g − 1) − (1 − C) + C csc 2(s) (g − 1)2 + s 2 

s s 
2 h �i� 

2≥ csc 2(s) 3(g − 1) + (1 − C) sin2(s) + C (g − 1)2 + s . 
3 

(2.48) 

Furthermore, we have 

� 3 2 
� 

C(g − 1)2 + 3(g − 1) + Cs2 + (1 − C) sin2(s) ≥ C (g − 1)2 + (g − 1) + s 
C 

9 ≥ C(s 2 − ), (2.49)
4C2 

where the second inequality is deduced by completing the square. Combining (2.48) 

and (2.49), we fnd that (2.47) holds for s ∈ (
2
3 
C , π). 

√ 
It remains to consider s ∈ (0, 

2
3 
C ]. For C ≥ 0.941, we have 

2
3 
C < 6. Thus, we 

have 

−s2/3 + s4/30 − s6/720 s(1 − s2/2 + s4/24)
< g(s) − 1 < − 1 ≤ −s 2/3 

1 − s2/6 + s4/120 s − s3/6 

and 

3s 
sin2(s) > (s − )2 

6 � 
for s ∈ (0, 

2
3 
C . It follows that 

s4 −s2 + s4/10 − s6/240 
C(g − 1)2 + 3(g − 1) + Cs2 + (1 − C) sin2(s) ≥ C + 

9 1 − s2/6 + s4/120 
3s 

+ Cs2 + (1 − C)(s − )2 

6 
4 � s 4C 2 

= − 
1 − s

2 
+ s4 9 5 

6 120 

189 − 220C 2 9C − 8 4+ s + s 
2160 1080�1 − C 6+ s (2.50)
4320 
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� 
for s ∈ (0, 

2
3 
C . We observe that the right hand side of (2.50) is positive if 

4C 2 189 − 220C 2 9C − 8 4 1 − C 6− + s + s + s > 0, (2.51)
9 5 2160 1080 4320 � 

and (2.51) holds for s ∈ (0, 
2
3 
C if 

2/5 − 7s2/80 + s4/135 − s6/4320 
C > =: f(s). (2.52)

4/9 − 11s2/108 + s4/120 − s6/4320 

Denote h(C) := 
2
3 
C . To complete the proof, we must show that C > f(s) for all 

0 < s ≤ 
2
3 
C = h(C). First, we compute 

−8s(s8 − 31s6 + 262s4 + 384s2 − 8640) √ 
f ′ (s) = > 0 for 0 < s < 6 

(−s6 + 36s4 − 440s2 + 1920)2 

and 

h ′ (C) = − 
3 

< 0. 
2C2 

√ 
Thus, f(s) is increasing for 0 < s < 6 and h(C) is decreasing. Moreover, f(s ∗) = 

√ 
h−1(s ∗) 3 ∗ ∗) ≈= 

2s ∗ for s ≈ 1.59438 ∈ (0, 6). It follows that if C ≥ 0.941 > f(s 

0.9408, then h(C) < h(f(s ∗)) = h(h−1(s ∗)) = s ∗ . In turn, we have C > f(s ∗) > 

f(h(C)) ≥ f(s) for 0 < s < 
2
3 
C = h(C), as desired, since f is increasing. Now by 

(2.48) and (2.50)-(2.52), we conclude that (2.47) also holds for s ∈ (0, 
2
3 
C ], which 

concludes the proof. 

1 ∂l∗ α2 
Lemma 4. Suppose min{b0, bl} < . If = 0 for µ = , then

2 ∂µ 4r h i1 1 1 1 1 
(b0 + bl − 1)2 = 12(b0 − )(bl − ) + (b0 − )(bl − ) . 

2 2 4 2 2 q 
Proof. Let τ = 

µ 
1 , set L(τ) := l∗(µ) and M(τ) := rτ − α

2 

4 
τ 2 
, and let ′ denote 

diferentiation with respect to τ . Then ∂l
∗ 
= 0 for µ = α

2 
if and only if L ′ ( 4r ) = 0.

∂µ 4r α2 
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2 

We recall from (2.41) that L ′ (τ) satisfes h i h 1 ir − τ α
2 − τα2(b0 − 1 )(bl − 1 ) + (b0 − 1 )(bl − 1 )
4 2 2 4 2 2L ′ − αL 
α(b0 + bl − 1) b0 + bl − 1 h i g ′ (ML) L2 α2τ 

= M2LL ′ + (r − )
ML 2 

α(b0+bl−1)for 0 < τ < 
α 
4r 
2 , where g(s) = s cot s. Since L ′ ( 4r ) = 0, L(

α 
4r 
2 ) = − (by 

α2 4r(b0− 1 )(bl− 1 )
2 2 

′ (s) −
(2.27)), and g = −2 + o(s), sending τ → 4r yields

s 3 α2 " # " #2
1 + (b0 − 1 )(bl − 1 ) r α(b0 + bl − 1)

α2 4 2 2 = . 
4r(b0 − 1

2 )(bl − 
2
1 ) 3 4r(b0 − 1

2 )(bl − 1
2 ) 

Multiplying both sides of the above equality by 
α
r 
2 and rearranging, we obtain the 

desired result. 

2.4.2 Computation of Λτ (0, 0) 

The proofs in this section follow analogous results in [45]. 

Lemma 5. For each 0 ≤ τ < 
α 
4r 
2 , the eigenvalue Λ(0, τ) satisfes h il α2τ 1 1 

1 − Λ+ + α2τ(b0 − )(bl − )
α(b0 + bl − 1) 4 2 2 r� ��α(b0 + bl − 1) � α2τ 2 

= g l − Λ τ − , (2.53)
l 4 

where g(s) = s cot(s). 

Proof. We recall from Proposition 3(a) that, for ν > α 
4r 

2 
, the critical domain size 

l∗ = l∗(ν, b0, bl) > 0 for which there exists a positive solution to the equation  � � − α(1 − 2b0)ψx + α2b0 (b0 − 1) + r ψ = 0 for x ∈ (0, l∗),νψxx ν 

ψx(0) = 0
νψx(l

∗) + α(b0 + bl − 1)ψ(l∗) = 0 

satisfes �√ √�4νr − α2 2α(b0 + bl − 1) 4νr − α2 

l ∗ tan = . (2.54)
2ν 4νr − α2 − 4α2(b0 − 

2
1 )(bl − 1

2 ) 
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Now for Λ = Λ(0, τ), there exists a positive solution to the equation  � �  − α(1 − 2b0)ψx + α2b0 (b0 − 1) + r(1 − η0 ) − Λ ψ = 0 for x ∈ (0, l),νψxx ν K 

ψx(0) = 0
νψx(l) + α(b0 + bl − 1)ψ(l) = 0, 

if and only if l∗ = l satisfes (2.54) with r(1 − η
K 
0 ) − Λ replacing r, where η0 = � � 

1 − α(b0+bl−1) 1 α(b0+bl−1)K . Setting l∗ = l, τ = , and r = r(1 − η0 ) − Λ = − Λ in
rl ν K l 

(2.54), we arrive at the desired result. 

�
α(b0+bl−1) 1Lemma 6. Let b0 + bl > 1 and l > . Then Λτ (0, 0) = −α2 + (b0 − 1 )(bl − 

r 4 2 

1 ) − (b0+bl−1)2 � 
.

2 3 

2 − s
4 

Proof. Using the expansion s cot(s) = 1 − s 
3 45 + . . . , we can express (2.53) as 

h il α2τ 1 1 
1 − Λ + + α2τ(b0 − )(bl − )

α(b0 + bl − 1) 4 2 2 h� � il2 α(b0 + bl − 1) α2τ 2 

= 1 − − Λ τ − 
3 l 4 
l4 h� � α2τ 2 i2α(b0 + bl − 1)− − Λ τ − + O(|τ |3), (2.55)
45 l 4 

where Λ = Λ(0, τ). Diferentiating (2.55) in τ , and setting τ = 0, we have 

h il α2 1 1 lα(b0 + bl − 1)− Λτ (0, 0) + + α2(b0 − )(bl − ) = − ,
α(b0 + bl − 1) 4 2 2 3 

so that 

�1 1 1 (b0 + bl − 1)2 � 
Λτ (0, 0) = −α2 + (b0 − )(bl − ) − . 

4 2 2 3 
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Chapter 3: Predator-prey Dynamics in a Shifting 

Environment 

3.1 Introduction 

A fundamental challenge in ecology is to understand the persistence and spread 

of a given species in an environment. These issues are receiving a renewed interest 

as changes in climatic conditions can dramatically impact the suitability of a habitat 

for a species’ survival and growth. As temperatures rise, many species have moved 

in the directions of the poles or toward higher elevations, in an apparent attempt to 

keep pace with shifting temperature isotherms [80, 63]. As species establish in new 

regions, new biotic interactions take place [41], which in turn can have signifcant 

consequences for species abundance and biodiversity [94, 69, 88], the functioning of 

ecosystems [88, 93, 100], the spread of disease [81, 103] and human welfare [81]. The 

ecological efects of a changing climate are complex and various. While many species 

are vulnerable to a changing climate, for many others climate-related changes may 

facilitate expansion to new areas and population growth [95, 5, 13, 47]. 

Mathematical modeling can be used to determine why certain species decline 

while others prosper under the changing climate. The study of species persistence 

and spread often depend on the spatial context, and much analysis in the classical 
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literature has been based on reaction-difusion models. A prominent example is the 

Fisher-KPP equation [36, 54], which describes the spreading of a single population 

ut = duxx + ru(1 − u) for x ∈ R, t > 0, (3.1) 

where d corresponds to the dispersal rate and r the intrinsic growth rate of a species 

u. For a given population density u(t, x), Aronson and Weinberger [3, 4] introduced 

the key notion of spreading speed, which refers to the number c ∗ > 0 such that 

lim sup u(t, x) = 0 for c ∈ (c ∗ , ∞), and 
t→∞ |x|>ct 

lim inf u(t, x) > 0 for c ∈ (0, c ∗ ). 
t→∞ |x|>ct 

The problem of spreading speed for more general equations of the form 

ut = duxx + f(u) for x ∈ R, t > 0, (3.2) 

was frst investigated by Kolmogorov et al. [54] for heaviside initial condition, who 

showed under certain assumptions on the growth function f(u) that 

∗ 
p 

c = 2 df ′(0). 

This result was later generalized to any compactly supported initial data and in higher 

spatial dimensions by Aronson and Weinberger [4]. This theoretical spreading speed 

has yielded good estimates for range expansion observed in nature [85]. 

Various studies have since revisited Fisher’s model with an interest in the impact 

of a shifting environment. To consider climate change, it is often assumed that the 

behavior of the species depends on the variable ξ = x − ct, where the constant c 

corresponds to the velocity of a shifting climate [82, 10, 66, 11]. See also [35], which 

studied a similar model in the context of an SIS model, and [97], for a survey on 
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reaction-difusion models in shifting environments. Many models have proposed the 

case where the growth rate ru(1 − u) in (3.1) is replaced by a shifting logistic form 

u(r(x − ct) − u), where r(x − ct) denotes the species’ intrinsic growth rate [82, 10]. 

These works assumed the growth rate r(ξ) to be positive on a bounded patch of 

suitable habitat and negative elsewhere, and were broadly interested in the efects of 

a shifting climate on the persistence of the species. 

A shifting environment also leads to new spreading phenomena. In [60], the 

spreading speed for solutions of Fisher’s equation with growth rate f(u, x − ct) = 

(r(x − ct) − u)u was determined using the Hamilton-Jacobi method, in the case that 

the intrinsic growth rate of the species is positive and monotone. They showed that, 

for a certain range of velocities of climate shift, the species spreads with speed dis-

tinct from either of the limiting KPP invasion speeds in a phenomenon called non-local 

pulling [48, 42]. When the growth rate is non-monotone, the existence of forced waves 

and their attractivity is studied in [11]. 

In addition to single species equations, the spreading dynamics for systems of 

equations has received considerable attention. Building on the earlier works on 

order-preserving systems (such as cooperative systems and competitive systems of 

two species) [65, 99, 67, 68], the spreading of two competing species in a shifting 

habitat is studied in [106, 26]. 

By contrast, for predator-prey systems a comparison principle is not immediately 

available and many studies regarding propagation phenomena in these systems have 

focused on the dynamics of traveling wave solutions. The existence of traveling wave 
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solutions for two-species predator prey equations was established in [32, 40], and stud-

ied further in [50, 77], while some results on the stability of traveling wave solutions 

were established in [39]. 

Until recently, few works have treated the spreading dynamics of predator-prey 

systems with general initial data. In [79], Pan determined the spreading speed of 

the predator for a predator-prey system with initially constant prey density and 

compactly-supported predator. Shortly thereafter, Ducrot, Giletti, and Matano [30] 

used methods from uniform persistence theory to characterize the spreading dynamics 

when both predator and prey are initially compactly supported. They showed that 

the behavior can be classifed based on the speeds of the prey in the absence of 

predator, and of the predator when prey is abundant (see also [31], for the case of a 

predator-prey equation with non-local dispersal, and [27, 78]). Since these works, the 

spreading speeds regarding the Cauchy problem for predator-prey systems with three 

species was studied in [29] (see also [101]). There, it was shown that the nonlocal 

pulling phenomenon can occur in a system with two predators and one prey. 

For other types of non-cooperative systems and their spreading speeds, we refer 

to [96], which characterizes the spreading speed for a general class of non-cooperative 

reaction difusion systems as the minimal traveling wave speed. We also note [28], 

which determined the spreading speed of infectious disease in an epidemic model, 

and [71], which considered the spreading dynamics for competition between three 

species. Spreading dynamics are also studied for nonlocal difusion problems, here we 

mention [105, 102] for such results in predator-prey models in the absence of shifting 

environment. 
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3.1.1 The predator-prey model in a shifting environment 

We are interested in the efect of the heterogeneous shifting profle of the conver-

sion efciency of prey to predator, represented below by the function ã(x − c1t), on 

the spreading dynamics. Though the temperature-dependence of the conversion ef-

ciency is not well-understood, there is some evidence that the conversion efciency is 

impacted by climate. Using an experimental system of predator and prey, Daugaard 

et al. [22] found that the conversion efciency of the predator increased with warm-

ing, and in a recent meta-analysis Lang et. al [61] identifed a trend toward increasing 

efciency of energy assimilation by consumers with increasing temperature. On the 

other hand, many biological processes depend unimodally on temperature, such that 

measures of species performance and ftness decline once temperature increases suf-

ciently beyond a “thermal optimum” [51, 23, 15]. It is thus plausible that predators 

currently experiencing climates at or near their thermal optimum may experience 

declines in conversion efciency with additional warming. 

To this end, we propose the following predator-prey model of reaction-difusion 

type to analyze the consequence of such efects on the population dynamics and spread 

of species:  ut uxx˜ = d1 ̃ + ũ(−κ − α1ũ+ ã(x − c1t)ṽ) in (0, ∞) × R, 
ṽt = d2ṽxx + ṽ(r̃ − α2ṽ − ̃bũ) in (0, ∞) × R, (3.3) 
ũ(0, x) = ũ0(x), ṽ(0, x) = ṽ0(x) in R. 

Here the predator and prey densities are represented by ũ(t, x) and ṽ(t, x). It is as-

sumed that the predator cannot persist in the absence of prey, and competes with 

other predators, while in the absence of predation the prey exhibits logistic growth 

and is described by the standard Fisher-KPP equation. The interaction rates between 

predator and prey are mediated by the consumption rate b̃ > 0 of prey by predator, 
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and by the predator’s conversion efciency function ã(x − c1t), which describes the 

degree to which consumed prey can be successfully converted to additional predators. 

For simplicity, we assume that conversion efciency has a fxed profle in the moving 

coordinate y = x − c1t with constant velocity c1. Finally, d̃  
i, α̃i, κ, r̃  are positive pa-

rameters, where d̃  
i are the random dispersal rates, αi are the intraspecifc competition 

rates, κ is the natural death rate of the predator species and r̃  is the natural birth 

rate of the prey species. 

Without loss of generality, we may non-dimensionalize the problem (3.3) and 

obtain the following model:  � � ut = uxx + − 1 − u + a(x − c1t)v u in (0, ∞) × R 

vt = dvxx + r(1 − v − bu)v in (0, ∞) × R (3.4) 
u(0, x) = u0(x), v(0, x) = v0(x) in R. 

We assume the following throughout our study of (3.4). 

(H1) The function a : R → R is monotone, and satisfes 

β := 1 − b(∥a∥∞ − 1) > 0, inf a(s) > 1 , and > 1. 
s∈R β ∥a∥∞ 

By observing (via maximum principle) that the density of the predator is bounded 

from above by ∥a∥∞ −1, it follows that the quantity β := 1 − b(∥a∥∞ − 1) corresponds 

to the minimum carrying capacity for the prey. 

Remark. It is documented in a microbial predator-prey system [22] that the quantity 

of predators produced for each prey consumed increases when temperature is increased. 

This corresponds to the case when c1 > 0 and a(·) is decreasing. We also study the case 

when increasing temperature decreases the predator efciency, i.e. a(·) is increasing. 
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We are interested in the situation when the initial data of the predator is compactly 

supported, while that of the prey has a positive upper and lower bound. For simplicity, 

we will assume throughout the discussion that (u0, v0) ∈ C2(R) satisfes 

(IC) 0 ≤ u0 ≤ ∥a∥∞ − 1, β ≤ v0 ≤ 1, and u0 has compact support. 

Finally, we defne the following limiting growth rates (at ±∞), to be used later in 

the proofs. ( 
r1 = a(−∞) − 1, r2 = a(+∞) − 1, 

(3.5) 
r1 = βa(−∞) − 1, r2 = βa(+∞) − 1. 

Here, r1 and r2 correspond to the limiting growth rates of the predator behind and 

ahead of the environmental shift, respectively, when the prey density is at its minimum 

value v = β, while r1 and r2 are the limiting growth rates of the predator behind and 

ahead of the shift, respectively, when the prey density is at its maximum value v = 1. 

3.1.2 Main Results 

In this paper, we are interested in the asymptotic speed of spread (or spreading 

speed) as the predator species u expands its territory. Up to a change of coordinates 

x 7→ −x, it is enough to focus our discussion on the rightward spreading speed, while 

allowing the spatial heterogeneity a(·) to be monotonically increasing or decreasing. 

In the remainder of this paper, we will refer to the rightward spreading speed c ∗ 

simply as the spreading speed, which is defned as follows. 

Defnition. Let u be the solution of (3.4), where u0 and v0 satisfy (IC). We say that 

the species u has spreading speed given by c ∗ > 0 if 

lim sup u(t, x) = 0 for each c ∈ (c ∗ , ∞), (3.6) 
t→∞ x>ct 

lim inf u(t, x) > 0 for each c ∈ (0, c ∗ ). (3.7) 
t→∞ 0<x<ct 
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

Following [44, Defnition 1.2], we introduce the closely related notion of maximal 

and minimal speed c∗, c∗: 

Defnition. Let u be the solution of (3.4), where u0 and v0 satisfy (IC).  � � c∗ := inf c > 0 | lim sup sup u(t, x) = 0 , � t→∞ x>ct � (3.8)c∗ := sup c > 0 | lim inf inf u(t, x) > 0 . 
t→∞ 0≤x<ct 

Remark. The species u has a spreading speed if and only if c∗ = c∗. In such a case, 

the spreading speed c ∗ is given by the common value c∗ = c∗. 

The following two main theorems characterize the spreading speed of u for the 

cases (i) a(·) is monotonically increasing and (ii) a(·) is monotonically decreasing, 

respectively. Assuming the positive axis points poleward and temperature is rising, 

they correspond to the cases when the the conversion efciency of the predator is 

suppressed or enhanced by the warming climate. 

Theorem 7. Let c1 > 0 be given, a : R → R be increasing, and suppose (H1) holds. 

If (u(t, x), v(t, x)) is the solution of (3.4) with initial data satisfying (IC), then the 

spreading speed of u exists, and is given by  √ √2 r2 if c1 ≤ 2 r2 √ √ √ √∗ c1 r1c := − r2 − r1 + c1 
√ if 2 r2 < c1 < 2 r1 + 2 r2 − r1 (3.9)2 − r2−r12 √ √ √ 

2 r1 if c1 ≥ 2 r1 + 2 r2 − r1. 

Theorem 8. Let a : R → R be decreasing such that (H1) holds, and let c1 ∈ 

√ √R \ (2 r2, 2 r1) be given. If (u(t, x), v(t, x)) is the solution of (3.4) with initial data 

satisfying (IC), then the spreading speed of u exists, and is given by ( √ √ 
2 r2 if c1 ≤ 2 r2, 

c ∗ = √ √ 
2 r1 if c1 ≥ 2 r1. 
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√ √ 
Remark. Note that the case c1 ∈ (2 r2, 2 r1) is not covered by Theorem 8. In that 

case the Hamilton-Jacobi approach does not apply. We conjecture that c ∗ = c1 in that 

case and the predator advances in locked step with the environment. See [11, 35] for 

results regarding a single species in a shifting habitat. A possible approach is to use 

the persistence theory as in [29]. 

Remark. In the case of a(·) ≡ a0 being a constant and v0 ≡ 1, the spreading speed 

of the predator was determined by Pan in [79, Theorem 2.1]. 

For the proof of Theorems 7 and 8, see Subsection 3.5.2 

We also show the convergence of (u, v) to the homogeneous state in the moving 

frames with speed diferent from c1 and c ∗ . Let us frst defne, for i = 1, 2, 

ai − 1 1 + b 
ui = , vi = (3.10)

1 + aib 1 + aib 

where a1 := a(−∞) and a2 := a(+∞). 

Theorem 9. Let (u, v) be the solution of (3.4), where (u0, v0) ∈ C2(R) satisfes (IC). 

(a) For any η > 0, 

lim sup ∥(u, v) − (0, 1)∥ = 0. (3.11) 
t→∞ |x|≥(c ∗ +η)t 

where ∥·∥ denotes the Euclidean norm in R2 . 

(b) Suppose c1 ≥ c ∗ . For any η ∈ (0, c ∗/2), 

lim sup ∥(u, v) − (u1, v1)∥ = 0, (3.12) 
t→∞ |x|<(c ∗−η)t 

where (u1, v1) is defned in (3.10). 
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

(c) Suppose c1 < c ∗ . For any η ∈ (0, c1/2), 

lim sup ∥(u, v) − (u1, v1)∥ = 0, (3.13) 
t→∞ |x|<(c1−η)t � � 

and for any η ∈ 0, (c ∗ − c1)/2 , 

lim sup ∥(u, v) − (u2, v2)∥ = 0, (3.14) 
t→∞ ∗−η)t(c1+η)t<x<(c 

where (ui, vi)is defned in (3.10). 

For the proof of Theorem 9, see Section 3.6. 

To consolidate the formulas for the spreading speeds in Theorems 7 and 8, we will 

c1denote λ∗ = − 
p
|r2 − r1|. Then the spreading speed for all cases can be given by

2  √ √ 
2 r2 if r1 < r2 and c1 ≤ 2 r2 √ √ √λ∗ + 

λ
r1 
∗ if r1 < r2 and 2 r2 < c1 < 2 r1 + 2 r2 − r1 √ √ √ 

σ(c1; r1, r2) = 2 r1 if r1 < r2 and c1 ≥ 2 r1 + 2 r2 − r1, (3.15) 
√ √ 
2 r2 if r1 > r2 and c1 ≤ 2 r2 √ √2 r1 if r1 > r2 and c1 ≥ 2 r1, 

or, equivalently,  2 √ 
r2 if c1 ≤ 2 

√ 
r2 √ √ √ 

σ(c1; r1, r2) = λ∗ + 
λ
r1 
∗ if r1 < r2 and 2 r2 < c1 < 2 r1 + 2 r2 − r1 (3.16) √ p

2 r1 if c1 ≥ 2 
√ 
r1 + 2 max{0, r2 − r1}, 

3.1.3 Related mathematical results 

We also mention a closely related work of Choi, Giletti, and Guo [21], where they 

considered a two-species predator-prey system similar to (3.4), with the intrinsic 

growth rate r = r(x − c1t) for the prey subject to the climate shift instead of the 

coefcient a. They considered the case when both initial data u0 and v0 are compactly 

supported and a non-decreasing profle for the growth rate with r changing sign, 

r(−∞) < 0 < r(∞). In the case of local dispersal, they showed that the prey persists 
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by spreading if and only if the maximal speed of the prey exceeds the environmental p
speed (i.e., 2 dr(+∞) > c1), while the predator persists by spreading at the speed 

given by the smaller of the prey and maximal predator spreading speeds. In their 

setting both species tends to zero in {(t, x) : x < c1t}, while in the zone ahead 

of the environmental shift, the density of the prey is strictly decreasing so there is 

no nonlocal pulling phenomenon. We also mention [43] for the case of two weak-

competing predators and one prey, and [1], for the case of one predator and two 

preys. For compactly supported initial data, the invasion wave of the prey resembles 

the efect of a shifting environment studied in our paper. However, the exact spreading 

speed of the predator(s) is not completely determined. 

Finally, we mention the work of Bramson [14], which established using proba-

bilistic techniques a correction term of 3
2 log t which separates the the location of the 

spreading front for solutions to the Fisher-KPP equation (3.1) and the asymptotic 

location of the minimal traveling wave solution. This result was later generalized 

using maximum principle arguments by Lau to KPP-like nonlinearities f(s) satisfy-

ing f ′ (s) ≤ f ′ (0) on [0, 1] [62]. For systems of equations of predator-prey type, the 

existence and characterization of such a delay between the spreading front and the 

asymptotic rate of spread is a challenging open question. 

3.1.4 Organization of the paper 

The rest of the paper will be organized as follows. In Section 3.2, we give a quick 

proof of the upper estimate of the spreading speed (namely, c∗ ≤ σ(c1; r1, r2)) by 

invoking the recent results on the difusive logistic equation in shifting environment 

due to [60]. In Section 3.3, we derive some rough estimates for the prey density v(t, x), 
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and state fve separate cases for the key parameters c1, r1, r2 where the spreading 

speed has to be treated separately. In Section 3.4, we outline, in several lemmas, the 

conceptual steps to estimate the spreading speed from below via explicit solution of 

some Hamilton-Jacobi equation (3.29) obtained as the limiting problem of the frst 

equation of (3.4). These lemmas will be proved in Subsections 3.4.1, 3.4.2 and 3.4.3. 

In Section 3.5, we determine the explicit formulas of the unique solution ρ̂ to the 

limiting problem in each case, and prove that the upper bound of c ∗ obtained in 

Section 3.3 is also the lower bound. This fnishes the proofs of Theorems 7 and 8 

regarding the spreading speed. In Section 3.6, we prove Theorem 9 regarding the 

convergence to homogeneous state. Finally, in the Appendix, we collect some useful 

comparison results regarding the limiting Hamilton-Jacobi equations in [60], which 

are rephrased in a format suitable for our purpose here. 

3.2 Upper bound on spreading speed 

In this section, we give a quick proof of c∗ ≤ σ(c1; r1, r2), where σ(c1; r1, r2) is 

given by the frst three cases of (3.15), i.e., the spreading speed c ∗ is bounded above 

by σ(c1; r1, r2). 

First, we establish some preliminary estimates on the solutions u and v of (3.4). 

Lemma 7. Assume 0 ≤ u0 ≤ ∥a∥∞ − 1 and β ≤ v0 ≤ 1. Then the corresponding 

solutions u(t, x) and v(t, x) of (3.4) satisfy 0 ≤ u(t, x) ≤ ∥a∥∞ −1 and β ≤ v(t, x) ≤ 1 

for all (t, x) ∈ (0, ∞) × R. 

Proof. By the classical theory of reaction-difusion equations, there exists a unique 

solution (u, v) satisfying (3.4) for all (t, x) ∈ (0, ∞) × R; see, e.g. [87]. Moreover, 

since 0 ≤ u0 ≤ ∥a∥∞ − 1 and β ≤ v0 ≤ 1, the maximum principle (see [83, Chapter 
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3, Section 6, Theorem 10] or [57, Theorem 6.2.1]) implies 0 ≤ u ≤ ∥a∥∞ − 1 and 

β ≤ v ≤ 1 on (0, ∞) × R. 

The global upper bound for v established in Lemma 7, combining with existing 

results for the difusive logistic equations with heterogeneous shifting coefcients [60], 

can be used to determine an upper bound for the spreading speed of u. 

Proposition 4. Let (u(t, x), v(t, x)) be the solution of (3.4), with the associated max-

imal spreading speed c̄  ∗ as given in (3.8). Then 

lim sup u(t, x) = 0 for each η > 0. (3.17) 
t→∞ x≥(σ+η)t 

In particular, c∗ ≤ σ, where σ = σ(c1; r1, r2) is defned in (3.16). 

Proof. By Lemma 7, v(t, x) ≤ 1 for all (t, x) ∈ (0, ∞) × R, hence we may regard 

u(t, x) as a subsolution of the following scalar problem ( 
ū t = ū xx + ū(−1 − ū+ a(x − c1t)) in (0, ∞) × R 

(3.18) 
ū(0, x) = u0(x) in R. 

Let ū be the classical solution of (3.18) with initial data u0(x). By the parabolic 

maximum principle we have 

u(t, x) ≤ ū(t, x) for all (t, x) ∈ (0, ∞) × R. (3.19) 

In the case r2 > r1, we may invoke [60, Theorem 6] to deduce that ū satisfes 

lim sup ū(t, x) = 0 for each η > 0, (3.20) 
t→∞ x≥(σ+η)t 

where σ = σ(c1; r1, r2) is given in (3.16). 

In case r1 > r2, we defne  √ √ exp(− r1x + 2r1t) if c1 ≥ 2 r1, � �√ √ 1 
p 

2U(t, x) = min{r1, exp(−λ(x − c1t))} if 2 r2 < c1 < 2 r1, λ = c1 − c − 4r2  √ √ 
2 1 min{r1, exp(− r2x + 2r2t} if 0 < c1 ≤ 2 r2. 
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Then it can be verifed that u is a generalized supersolution of (3.18) (see [57, Def-

inition 1.1.1] or [12, Defnition 4.2] for the defnition). Hence, we again deduce that 

(3.20) holds where  2 √ 
r2 if c1 ≤ 2 

√ 
r2, √ √ 

σ = 2 r1 if c1 ≥ 2 r1, 
c1 otherwise. 

Combining with (3.19), we conclude that 

lim sup u(t, x) = 0 for each η > 0, 
t→∞ x≥(σ+η)t 

√ √ 
where σ is given in (3.16) (and σ = c1, in case 2 r1 > c1 > 2 r2). This completes 

the proof. 

3.3 Rough Estimate for v(t, x) 

Having established that the spreading speed is bounded above by σ = σ(c1; r1, r2), 

we may also deduce in the following lemma that v(t, x) converges to its carrying 

capacity as t →∞ in the region {(x, t) : x > σt}. 

Lemma 8. Let (u(t, x), v(t, x)) be the solution of (3.4). Then 

lim sup |v(t, x) − 1| = 0 for each η > 0, (3.21) 
t→∞ x≥(σ+η)t 

where σ is given by (3.16). 

Proof. Since v(t, x) ≤ 1 (thanks to Lemma 7), it sufces to show the lower bound. We 

shall follow the proof of Theorem 5.1 in [29]. Fix c > σ(c1; r1, r2). we may suppose for 

contradiction that there exists a sequence {(tn, xn)} with tn →∞ and xn ≥ ctn such 

that lim sup v(tn, xn) < 1. Denote (un, vn)(t, x) = (u, v)(t + tn, x + xn). By standard 
n→∞ 

parabolic estimates, we may pass to a further subsequence so that (un, vn) converges 
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to an entire in time solution (u∞, v∞) of (3.4) in Cloc(R2). Since c > σ(c1; r1, r2), by 

Lemma 4, we have u∞ ≡ 0. Thus, v∞ is an entire solution satisfying the equation 

(v∞)t = D(v∞)xx + rv∞(1 − v∞) for (t, x) ∈ R2 . 

Since v ≥ β for all (t, x) ∈ (0, ∞) × R, we deduce that v∞ ≥ β for all (t, x) ∈ R2 . 

By the classifcation of entire solution of the difusive logistic equation (see, e.g. 

[70, Lemma 2.3(d)]) we have v∞ ≡ 1. This is in contradiction with the statement 

lim sup v(tn, xn) < 1. 
n→∞ 

Having established the upper bound of the spreading speed, the outstanding task is 

to estimate the spreading speed from below. We will do so by adopting the Hamilton-

Jacobi approach [34]. To this end, defne 

� � 
x x − c1tF ϵ(t, x) = −1 + v( t , )a (3.22)

ϵ ϵ ϵ ϵ 

and its (lower) half-relaxed limit [8] 

F ϵ(t ′ F∗(t, x) = lim inf , x ′ ). (3.23)
ϵ→0 

(t ′ ,x ′ )→(t,x) 

We will divide the proof of the spreading speed into the following cases, depending 

on the speed of environmental shift c1 and the profle of the conversion efciency 

a(x − c1t). 

√ 
Case 1(a): r1 < r2 and c1 < 2 r2 

√ √ √ 
Case 1(b): r1 < r2 and 2 r2 < c1 < 2( r1 + r2 − r1) 

√ √ 
Case 1(c): r1 < r2 and c1 > 2( r1 + r2 − r1) 

√ 
Case 2(a): r1 > r2 and c1 < 2 r2 
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





√ 
Case 2(b): r1 > r2 and c1 ≥ 2 r1 

In Case 1(a) - (c), we have r1 < r2, and we let   √ for s ≥ 2r2 r2 √ √ 
R1a(s) = r2 for c1 ≤ s < 2 r2 if c1 < 2 r2, 

r1 for s < c1   for s ≥ c1, r2 √ √ √ 
R1(s) = R1b(s) = r1 for λ + r1 ≤ s < c1 if 2 r2 < c1 < 2( r1 + r2 − r1), 

λ 

r1 for s < λ + r1  λ  for s ≥ c1,r2 √ √ √ 
R1c(s) = r1 for 2 r1 ≤ s < c1 if c1 > 2( r1 + r2 − r1)  √ r1 for s < 2 r1 

(3.24) 

In Cases 2(a)-(b), we have r1 > r2, and we let   r2 for s ≥ 2 
√ 
r2, √ √ 

R2a(s) = r2 for c1 ≤ s < 2 r2 if c1 < 2 r2   
r1 for s < c1. 

R2(s) =  (3.25)r2 for s ≥ c1, √ √ 
R2b(s) = r1 for 2 r1 ≤ s < c1 if c1 > 2 r1.   √ 

r1 for s < 2 r1 

Lemma 9. F∗(t, x) ≥ Ri(x/t) in cases 1(a)-(c) and 2(a)-(b). 

Proof. The lemma follows from the defnition of F∗, in (3.23), and the global bounds 

β ≤ v(t, x) ≤ 1 (Lemma 7). 

3.4 Lower bound on the spreading speed 

We will use the Hamilton-Jacobi method to prove a lower bound for the spreading 

speed. To this end, defne the WKB-Ansatz [34] 

w ϵ(t, x) = −ϵ log u ϵ(t, x) where u ϵ(t, x) = u(t/ϵ, x/ϵ), (3.26) 
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and consider the half-relaxed limits [9] 

w ∗ (t, x) = lim sup w ϵ(t ′ , x ′ ) and w∗(t, x) = lim inf w ϵ(t ′ , x ′ ). (3.27)
ϵ→0ϵ→0 

(t ′ ,x ′ )→(t,x) (t ′ ,x ′ )→(t,x) 

In the following lemma, we show that w ∗(t, x) and w∗(t, x) can be related to one 

dimensional-functions ρ∗(s) and ρ∗(s), respectively, 

Lemma 10. Let w ∗ and w∗ be defned as in (3.27). Then w ∗(t, x) = tρ∗(x/t) and 

w∗(t, x) = tρ∗(x/t) for some functions ρ∗ and ρ∗. 

Proof. For the existence of ρ∗ , we may compute 

�t ′ ′ � � t ′′ ′′ � x x 
w ∗ (t, x) = lim sup −ϵ log u , = t lim sup −(ϵ/t) log u , . 

ϵ→0 ϵ ϵ ϵ→0 ϵ/t ϵ/t 
(t ′′ (t ′ ,x ′ )→(t,x) ,x ′′ )→(1,x/t) 

Thus w ∗(t, x) = tw ∗(1, x/t), and the frst part of the result is proved if we take 

ρ∗(s) = w ∗(1, s). The proof of the second part is analogous. 

Next, we describe a bird’s eye view of the Hamilton-Jacobi approach in order to 

achieve our fnal goal of bounding the spreading speed from below by the optimal 

constant σ > 0. For clarity, we will state the necessary lemmas and provide their 

proofs later on. 

We start with the following lemma which is due to [34] for the KPP equation, the 

proof is presented Subsection 3.4.1. 

Lemma 11. Suppose that there is s0 > 0 such that ρ∗(s) = 0 for all s ∈ [0, s0]. Then 

there exists δ0 > 0 such that 

lim inf inf u(t, x) ≥ δ0 for each η > 0 sufciently small. 
t→∞ ηt<x<(s0−η)t 
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Hence, a lower bound of the spreading speed (and hence the complete proofs of our 

main theorems) can be obtained by determining the set {s : ρ∗(s) = 0}. Precisely, it 

is sufcient to show that ρ∗(s) = 0 for s ∈ [0, σ], where σ = σ(c1; r1, r2) as in (3.16). 

To this end, we derive a limiting Hamilton-Jacobi equation for w ∗ and then for 

ρ∗ . Observe that wϵ satisfes 

w ϵ − ϵwϵ + |w ϵ |2 + (F ϵ(t, x) − u ϵ) = 0 for (t, x) ∈ (0, ∞) × R, (3.28)t xx x 

where F ϵ is given in (3.22). By the fact that F∗(t, x) ≥ R(x/t), it is standard [34, 60] 

to deduce the following. 

Lemma 12. Suppose F∗(t, x) ≥ R(x/t), then ρ∗ is a viscosity subsolution of 

min{ρ − sρ ′ + |ρ ′ |2 + R(s), ρ} = 0 for s ∈ (0, ∞). (3.29) 

Moreover, 

ρ ∗ (0) = 0 and ρ ∗ (s) < ∞ for all s ∈ [0, ∞). (3.30) 

Proof. We postpone the proof to Subsection 3.4.2. 

By the comparison principle, discussed in Section 3.4.3, the Hamilton-Jacobi equa-

tion (3.29) has a unique viscosity solution. 

Lemma 13. For any given case (i, j) ∈ {(1, a), (1, b), (1, c), (2, a), (2, b)} as stated in 

Section 3.3, let R be given by R = Rij . The Hamilton-Jacobi equation (3.29) has a 

unique viscosity solution, ρ̂, satisfying 

ρ̂(0) = 0 and lim 
s→∞ 

ρ̂(s) 
s 
= ∞. (3.31) 

Moreover, ρ̂ is nondecreasing in s, i.e. 

ρ̂(s) ≡ 0 ′ for 0 ≤ s ≤ sup{s ≥ 0 : ρ̂(s ′ ) = 0}. (3.32) 
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Furthermore, the following Lemma holds: 

Lemma 14. For any given case (i, j) ∈ {(1, a), (1, b), (1, c), (2, a), (2, b)} as stated in 

Section 3.3, let R be given by R = Rij and let ρ̂ be the unique solution of (3.29) as 

specifed in Lemma 13. Then 

0 ≤ ρ ∗ (s) ≤ ρ̂(s) for s ≥ 0. 

The statement (3.32) and Lemma 14 imply that 

ρ ∗ (s) = 0 for 0 ≤ s ≤ sup{s ′ ≥ 0 : ρ̂(s ′ ) = 0}. (3.33) 

Together with Lemma 11, this enables us to establish 

c∗ ≥ sup{s ≥ 0 : ρ̂(s) = 0}. 

Next, we will establish the explicit formula of the unique solution ρ̂ satisfying 

(3.29) in viscosity sense and (3.31) in classical sense in Lemma 17. 

√ 
For example, in Case 1(a) (r1 < r2 and c1 < 2 r2), we will show that ( 

2 √s 
4 − r2 for s > 2 r2

ρ̂(s) = √ (3.34)
0 for 0 ≤ s ≤ 2 r2. 

Hence, we deduce from Lemma 14 that 

0 ≤ ρ ∗ (s) ≤ ρ̂(s) = 0 for 0 ≤ s ≤ 2 
√ 
r2. 

√ 
By Lemma 11, we conclude that c∗ ≥ 2 r2. This establishes the lower bound of the 

spreading speed in Case 1(a). The spreading speed in Case 1(a) is thus determined, 

√ 
since 2 r2 is also the upper bound of spreading speed (thanks to Proposition 4). 

In the next couple subsections, we present the proofs of the above lemmas. 
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3.4.1 Proof of Lemma 11 

Proof of Lemma 11. Our proof is adapted from Theorem 1.1 of [34]. Fix a small 

0 < η ≪ 1. It is sufcient to show that there exists δ0 = δ0(η) > 0 such that 

lim inf inf u ϵ(t, x) ≥ δ0 (3.35)
ϵ→0 K 

for any compact set given by K = {(1, x) : η ≤ x ≤ s0 −η} ⊂⊂ {(t, x) : 0 < x/t < s0}. 

Indeed, 

lim inf inf u(t, x) = lim inf inf u ϵ(t, x) ≥ δ0. 
t→∞ ηt<x<(s0−η)t ϵ→0 K 

To show (3.35), we frst observe that w ∗(t, x) = tρ∗(x/t) = 0 in some compact 

˜subset K such that 

K ⊂ Int K̃ ⊂ {(t, x) : 0 < x/t < s0}, 

which implies wϵ(t, x) → 0 uniformly in a neighborhood of K. Now for (t0, x0) ∈ K, 

let ψ(t, x) = (t − t0)2 +(x − x0)2 . Then w ∗ − ψ has a strict local maximum at (t0, x0). 

Since wϵ → 0 uniformly in a neighborhood of K, for each ϵ > 0 sufciently small, 

the function wϵ − ψ has a local maximum at (tϵ, xϵ) ∈ K, where (tϵ, xϵ) → (t0, x0) as 

ϵ → 0. Thus, 

o(1) = ∂tψ − ϵ∂xxψ + |∂xψ|2 ≤ ∂tw ϵ − ϵ∂xxw ϵ + |∂xw ϵ|2 = u ϵ − F ϵ ≤ u ϵ − δ0 (3.36) 

at (t, x) = (tϵ, xϵ), where δ0 = β infs∈R a(s) − 1 > 0. 

Using the fact that wϵ − ψ has a local maximum at (tϵ, xϵ), we deduce that 

w ϵ(tϵ, xϵ) ≥ (w ϵ − ψ)(tϵ, xϵ) ≥ (w ϵ − ψ)(t0, x0) = w ϵ(t0, x0) 

which implies that uϵ(t0, x0) ≥ uϵ(tϵ, xϵ). Combining with (3.36), we have 

u ϵ(t0, x0) ≥ u ϵ(tϵ, xϵ) ≥ δ0 + o(1). 
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Since the above argument is uniform for arbitrary (t0, x0) ∈ K, this implies (3.35). 

3.4.2 Proof of Lemma 12 

We recall the defnition of viscosity solutions of (3.29). 

Defnition. We recall the defnition of viscosity solution of Hamilton-Jacobi equations 

with discountinuous Hamiltonian, following [8] and originating from [52]. In the 

following let R∗ and R∗ be the upper and lower envelope of R, which is given by 

R ∗ (s) = lim sup R(s ′ ) and R∗(s) = lim inf R(s ′ ). 
′ →ss ′ →s s 

• A lower semicontinuous function ρ̂ is called a viscosity super-solution of (3.29) 

if ρ̂ ≥ 0, and for any test function ϕ ∈ C1 , if s0 is a strict local minimum of 

ρ̂ − ϕ, then 

ρ̂(s0) − s0ϕ ′ (s0) + |ϕ ′ (s0)|2 + R ∗ (s0) ≥ 0. 

• An upper semicontinuous function ρ̂ is called a viscosity sub-solution of (3.29) 

if for any test function ϕ ∈ C1 , if s0 is a strict local maximum of ρ̂ − ϕ and 

ρ̂(s0) > 0, then 

ρ̂(s0) − s0ϕ ′ (s0) + |ϕ ′ (s0)|2 + R∗(s0) ≤ 0. 

• We say ρ̂ is a viscosity solution of (3.29) if ρ̂ is a viscosity super- and sub-

solution. 

We will frst show that ρ∗ is nonnegative and that ρ∗(0) = 0. 

Lemma 15. Let ρ∗ be defned as in Lemma 10. Then 

ρ ∗ (0) = 0 and ρ ∗ (s) ≥ 0 for s ≥ 0. (3.37) 
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Proof. We frst show w ∗(t, x) ≥ 0 for (t, x) ∈ [0, ∞) × R. Indeed, since u(t, x) ≤ 

max{r2, r1} for all (t, x) ∈ [0, ∞) × R, by the defnition of w ∗ we have 

wϵ ≥ −ϵ log(max{r2, r1}) for each ϵ > 0 and (t, x) ∈ [0, ∞) × R, and we may compute 

ϵ(t ′ ′ ) ≥ 0w ∗ (t, x) = lim sup w , x for (t, x) ∈ [0, ∞) × R. (3.38) 
ϵ→0 

(t ′ ,x ′ )→(t,x) 

In particular, w ∗(t, 0) ≥ 0 for t > 0. 

The proof will be complete once we show w ∗(t, 0) ≤ 0 for t > 0. Denote r = r1 ∧r2. 

Then using the lower bound v ≥ β, we see that u is a super-solution of 

ut − uxx = u(r − u) in (0, ∞) × R. (3.39) 

Let u(t, x) be the solution of (3.39) with identical (compactly supported) initial con-

dition as u(t, x), then the classical spreading result for the difusive logistic equation 

√ 
[4] says that u has spreading speed 2 r. In particular, 

lim inf inf tu(t, x) ≥ 2δ1 for some δ1 > 0.√ 
t→∞ |x|< r 

By the comparison principle, u ≥ u, i.e. there exists t1 > 0 such that 

inf u(t, x) ≥ δ1 for t ≥ t1,√ 
|x|< rt 

which implies 

sup√ 
w ϵ(t, x) ≤ −ϵ log δ1. (3.40) 

|x|< rt 
t≥ϵt1 

Now, fx an arbitrary t0 > 0. Let (t, x) → (t0, 0) and ϵ → 0, we deduce 

w ∗ (t0, 0) = lim sup w ϵ(t, x) ≤ 0. (3.41) 
ϵ→0 

(t,x)→(t0,0) 
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Combining (3.38) and (3.41), we have 

w ∗ (t, 0) = 0 for all t > 0. (3.42) 

We recall w ∗(t, x) = tρ∗(x/t) (thanks to Lemma 10), so that (3.37) directly follows 

from (3.38) and (3.42). This completes the proof. 

The following lemma implies that ρ∗(s) < ∞ for s ∈ [0, ∞). 

Lemma 16. Let wϵ be a solution of (3.28). Then for each compact subset Q of 

(0, ∞) × R, there is a constant C(Q) independent of ϵ such that 

w ϵ(t, x) ≤ C(Q) for (t, x) ∈ Q and ϵ ∈ (0, 1/C(Q)]. 

In particular, 

w ∗ (t, x) < +∞ for each (t, x) ∈ (0, ∞)×R and ρ ∗ (s) < +∞ for each s ∈ [0, ∞). 

(3.43) 

Proof. We only prove the bound for Q ⊂ (0, ∞) × [0, ∞). The case for Q ⊂ (0, ∞) × 

(−∞, 0] is similar and is omitted. Our proof follows the ideas in [34]. Fix δ ∈ (0, 1) 

such that Q ⊂ [δ, 1/δ] × [0, 1/δ]. Defne 

|x + 2δ|2 ϵ 
z ϵ(t, x) = + log t + Cδ(1 + t). 

4t 2 

By taking Cδ > 0 to be a large constant depending on δ, zϵ is a (classical) super-

solution of (3.28) in (0, ∞) × (0, ∞). 

By (3.42) in the proof of Lemma 15 and the defnition of w ∗ , there is a constant 

Cδ > 0 such that, 

sup w ϵ(t + δ/2, 0) ≤ Cδ for t ∈ [0, 1/δ]. 
0<ϵ≤1/2 
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Observe that for ϵ sufciently small, we have ( 
wϵ(δ/2, x) < ∞ = zϵ(0, x) for x ≥ 0 

wϵ(t + δ/2, 0) ≤ Cδ ≤ zϵ(t, 0) for t ∈ [0, 1/δ]. 

It follows from the maximum principle that 

w ϵ(t + δ/2, x) ≤ z ϵ(t, x) for (t, x) ∈ [0, 1/δ] × [0, ∞). 

Taking supremum over [δ/2, 1/δ] × [0, 1/δ], we have � � 
|x + 2δ|2 

sup w ϵ(t + δ/2, x) ≤ Cδ 
′ := sup + log t + Cδ(1 + t) . 

4t 

(3.44) 

This completes the proof. 

[δ/2,1/δ]×[0,1/δ] [δ/2,1/δ]×[0,1/δ] 

Next, we prove Lemma 12. 

Proof of Lemma 12. Since (3.30) is a consequence of Lemma 15 and (3.43), it remains 

to show that ρ∗ is a viscosity subsolution of (3.29). 

Let ϕ ∈ C1 be a test function and suppose that ρ∗ − ϕ has a strict local maximum 

at s = s0, and that ρ∗(s0) > 0. Without loss of generality, we may assume that 

ρ∗ − ϕ ≤ 0 for all s near s0, with equality holding only at s = s0. We will show that 

ρ ∗ (s0) − s0ϕ ′ (s0) + |ϕ ′ (s0)|2 + R(s0) ≤ 0. 

First, we note that w ∗(t, x) = ρ∗(x/t) and that w ∗(t, x) − tϕ(x/t) − (t − 1)2 ≤ 0 for 

all (t, x) near (1, s0), with equality holding only at (t, x) = (1, s0). Defne, in terms 

of ϕ, a two variable test function 

φ(t, x) = tϕ(x/t) − (t − 1)2 . 
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Then by the defnition of w ∗ , there exists a sequence ϵn → 0 and sequence of points 

(tn, xn) → (1, s0) as n →∞ such that: wϵn − φ has a local maximum at (tn, xn), and 

wϵn (tn, xn) → w ∗(t0, x0) > 0. Thus, for (t, x) = (tn, xn), we have 

ϵn ϵn∂tφ = ∂tw = ϵn∂xxw − |∂xw ϵn |2 − (F ϵn − u ϵn ) 

≤ ϵn∂xxφ − |∂xφ|2 − (F ϵn − u ϵn ). 

Thus, 

∂tφ − ϵn∂xxφ + |∂xφ|2 + (F ϵn − u ϵn ) ≤ 0 (3.45) 

for (t, x) = (tn, xn). Letting n →∞, we obtain 

∂tφ(t0, x0) + |∂xφ(t0, x0)|2 + F∗(t0, x0) ≤ 0, (3.46) 

where we have used the fact that wϵn (tn, xn) → w ∗(t0, x0) > 0 implies uϵn (tn, xn) → 0. 

Since F∗(t0, x0) ≥ R(x0/t0), it follows from (3.46) that 

ϕ(s0) − s0ϕ ′ (s0) + |ϕ ′ (s0)|2 + R(s0) ≤ 0. 

Thus, ρ∗ is a viscosity sub-solution of (3.29). 

3.4.3 Proof of Lemmas 13 and 14 

Proof of Lemma 13. Observe, in each case i = 1, 2, that our choice of R satisfes 

(B1)-(B2) of the Appendix. By Corollary 3 of the Appendix, there exists a unique 

ρ̂ satisfying (3.29) in the viscosity sense, and the boundary condition (3.31) in the 

classical sense. Moreover, s 7→ ρ̂ is nondecreasing. This proves Lemma 13. 

Proof of Lemma 14. We observe that ρ∗ is a viscosity subsolution (by Lemma 12) and 

that ρ̂ is a viscosity super-solution (by Lemma 13). Moreover, by (3.30) and (3.31), 
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we have 

ρ ∗ (0) = ρ̂(0) = 0, and 
ρ∗(s) ρ̂(s)

lim ≤ +∞ = lim . 
s→∞ s s→∞ s 

We can therefore apply the comparison principle (see Lemma 18 of the Appendix) to 

derive 

ρ ∗ (s) ≤ ρ̂(s) for s ≥ 0. 

Finally, ρ∗(s) ≥ 0 is proved in Lemma 15. 

3.5 Solving for spreading speed via explicit formulas for ρ̂ 

For each of the cases 1(a)-(c), 2(a), and 2(b), we will propose an explicit formula 

for ρ̂ in Subsection 3.5.1. Thanks to the uniqueness result in Lemma 13, it is enough 

to verify (separately for each of the cases) that the given expression defnes a viscosity 

solution of (3.29). This will be done in Subsection 3.5.2. 

3.5.1 Explicit formulas for ρ̂ 

Below, we state the explicit formula for ρ̂ in each case. Subsequently, we will 

verify in Lemma 17 that ρ̂ solves (3.29) by invoking the defnition of the viscosity 

solution [8]. 

• Case 1(a): r1 < r2 and c1 < 2 
√ 
r2. ( 

2 √s − r2 for s > 2 r2
ρ̂(s) = 4 √ (3.47)

0 for 0 ≤ s ≤ 2 r2, 

√ √ √
• Case 1(b): r1 < r2 and 2 r2 < c1 < 2( r1 + r2 − r1).   

4 

2 − r2 for s > c1 s 

ρ̂(s) = λs − (λ2 + r1) for (λ + r1 ) < s ≤ c1 (3.48) 
λ 

0 for 0 ≤ s ≤ λ + r
λ 
1 , 

√ 
where λ = c 

2 
1 − r2 − r1. 
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





√ √
• Case 1(c): r1 < r2 and c1 > 2( r1 + r2 − r1)  

s2 − r2 for s > c1 4λs − (λ2 + r1) for 2λ < s ≤ c1
ρ̂(s) = 

s2 √ (3.49)
− r1 for 2 r1 < s ≤ 2λ 4 √ 

0 for 0 ≤ s ≤ 2 r1. 

• Case 2(a): r1 > r2 and c1 < 2 
√ 
r2. ( 

2 √s for s > 2
4 − r2 r2

ρ̂(s) = √ (3.50)
0 for 0 ≤ s ≤ 2 r2, 

• Case 2(b): r1 > r2 and c1 ≥ 2 
√ 
r1.  

s2 − r2 for s > 2λ̃  4λ̃s − (λ̃2 + r2) for c1 < s ≤ 2λ̃ 
ρ̂(s) = 

s2 √ (3.51)
for 2 r1 < s < c1 4 − r1 √ 

0 for 0 ≤ s ≤ 2 r1, 

c1where λ̃ = 
2 + 

√ 
r1 − r2. 

3.5.2 ρ̂ solves the HJE (3.29) in the viscosity sense 

Lemma 17. The unique viscosity solution ρ̂ of (3.29) satisfying (in the classical 

sense) 

ρ̂(s)
ρ̂(0) = 0 and lim = ∞, 

s→∞ s 

is given by the formulas of Subsection 3.5.1. 

Proof. We prove that the above formulas determine the the unique viscosity solution 

guaranteed by Lemma 13. To do that, it is enough to show that, in each case, ρ̂ as 

given above, satisfes (i) the Hamilton-Jacobi equation (3.29) in the viscosity sense, as 

well as (ii) the boundary condition (3.31) in the classical sense. In view of the explicit 

formulas, (ii) is obvious. Thus, it remains to verify that ρ̂ is a viscosity solution of 
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(3.29) in each case. Since the proof only difers slightly in each case, we consider only 

two representative cases 1(b) and 2(b) here, and omit the verifcation of the rest. 

Let us proceed with Case 1(b), where we fx r1, r2, c1 satisfying 

√ √ √ 
r1 < r2, and 2 r2 < c1 < 2( r1 + r2 − r1). (3.52) 

Next, we set  r2 for s ≥ c1, 

for λ + r1 ≤ s < c1R(s) = R1b(s) = r1 λ 
for s < λ + r1 .r1 λ 

and   
4 

2 − r2 for s > c1 s 

ρ̂(s) = λs − (λ2 + r1) for (λ + r
λ 
1 ) < s ≤ c1 (3.53)

0 for 0 ≤ s ≤ λ + r
λ 
1 , 

√ 
where λ = c 

2 
1 − r2 − r1. 

First, observe that ρ̂ is continuous, thanks to our choice of λ. 

Next, we show that ρ̂ is a viscosity subsolution of (3.29). To this end, observe that 

ρ̂ satisfes the equation (3.29) in the classical sense almost everywhere in [0, ∞). (In 

fact, it satisfes the equation classically for s ∈ R \ {c1, λ + r1/λ}.) By the convexity 

of the Hamiltonian, we can apply [7, Proposition 5.1] to conclude that it is in fact a 

viscosity sub-solution of (3.29). 

Next, we show that ρ̂ is a viscosity super-solution of (3.29). Suppose ρ̂−ϕ obtains 

a strict local minimum at s0 ∈ [0, ∞) for some ϕ ∈ C1 . Now, ρ̂ is a classical solution of 

(3.29) for all s ̸∈ {λ + r1 , c1}, so it automatically satisfes (3.29) in the viscosity sense.
λ 

We need only consider s0 ∈ {λ + r1 , c1}. Suppose s0 = λ + r1 . Then 0 ≤ ϕ ′ (s0) ≤ λ.
λ λ 

Therefore, R(s0) = r1 and at the point s = s0, it holds that 

� �r1 r1
ρ − s0ϕ ′ + |ϕ ′ |2 + R ∗ = − λ + ϕ ′ + |ϕ ′ |2 + r1 = (ϕ ′ − λ)(ϕ ′ − ) ≥ 0,

λ λ 
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


where the last inequality is a consequence of ϕ ′ (s0) ≤ λ < r 
λ 
1 (which in turn follows 

from the choice of λ and the condition (3.52)). 

If s0 = c1, then R∗(s0) = max{r1, r2} = r2, and we have 

� � 
c21ρ − s0ϕ ′ + |ϕ ′ |2 + R ∗ − c1ϕ ′ + |ϕ ′ |2− r2 + r2 = 
4 

= (ϕ ′ − 
c1 
)2 ≥ 0. 
2 

This proves that ρ̂ is a viscosity super-solution. 

This completes the proof that the unique viscosity solution ρ̂ as guaranteed by 

Lemma 13 is given by the explicit formula (3.53) for the frst representative Case 

1(b). 

Let us proceed with Case 2(b), where we fx r1, r2, c1 satisfying 

√ 
r1 > r2, and c1 ≥ 2 r1. (3.54) 

Next, we set  

R(s) = R2b(s) = 

r2 
r1 
r1 

for s ≥ c1, √ 
for 2 r1 ≤ s < c1 √ 
for s < 2 r1 

and  2 
for s > 2λ̃s − r2 4λ̃s − (λ̃2 + r2) for c1 < s ≤ 2λ̃ 

ρ̂(s) = (3.55)√2s − r1 for 2 r1 < s < c1 4 √ 
0 for 0 ≤ s ≤ 2 r1, 

√ 
r1 − r2.where λ̃ = 1c 

2 + 

Again, we frst observe that ρ̂, as given in (3.55), is continuous, and satisfes the 

√ 
equation (3.29) in the classical sense for s ∈ [0, ∞) \{c1, 2 r1} (note that it is in fact 

continuously diferentiable in a neighborhood of s = 2λ̃). It then follows again from 

[7, Proposition 5.1] that ρ̂ is a viscosity sub-solution of (3.29). 
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� 

Next, we verify that it is also a viscosity super-solution. Suppose ρ̂ − ϕ obtains a 

strict local minimum at s0 ∈ [0, ∞) for some ϕ ∈ C1 . Since ρ̂ is a classical solution 

√ √ 
of (3.29) for all s ̸∈ {c1, 2 r1}, we need only consider s0 ∈ c1 or s0 = 2 r1. Suppose 

s0 = c1, then 

� � 
c21 

�2 
ρ − s0ϕ ′ + |ϕ ′ |2 + R ∗ ϕ ′ − c1ϕ ′ + |ϕ ′ |2 + r1 = − c 

2
− r1 

1 ≥ 0 at s = s0.= 
4 

√ 
Suppose s0 = 2 r1, then 

√ √ 
ρ − s0ϕ ′ + |ϕ ′ |2 + R ∗ = 0 − (2 r1)ϕ ′ + |ϕ ′ |2 + r1 = (ϕ ′ − r1)

2 ≥ 0 at s = s0. 

This verifes that ρ̂ is a viscosity super-solution of (3.29). This completes the proof 

that the unique viscosity solution ρ̂ as guaranteed by Lemma 13 is given by the 

explicit formula (3.55) for the frst representative Case 2(b). 

We omit the verifcation of the other cases since they are analogous. 

√ √ 
Corollary 2. Suppose either that (1) r1 < r2, or that (2) r1 > r2 and c1 ̸∈ (2 r1, 2 r2). 

Then there exists δ0 > 0 such that for each η > 0, 

lim inf inf u(t, x) ≥ δ0 for each η > 0 small enough, 
t→∞ |x|<(σ−η)t 

where σ = σ(c1; r1, r2) is given in (3.16). In particular, we have 

c∗ ≥ σ(c1; r1, r2). (3.56) 

Proof. Observe that 

ut ≥ uxx + u(δ ′ − u) for (t, x) ∈ (0, ∞) × R 

where δ ′ = β infs∈R a(s) − 1 > 0, thanks to (H1). Since u has compactly supported 

initial data, it follows from standard theory that the spreading speed of u is bounded 
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√ 
from below by 2 δ′ , i.e. 

lim inf inf u(t, x) ≥ δ0. (3.57)√ 
t→∞ |x|<3 δ ′ t/2 

For given c1, r1, r2 > 0 satisfying any of the cases 1(a)-(c) and 2(a)-(b), Lemma 

17 says that the unique solution ρ̂ guaranteed in Lemma 13 is given as in Subsection 

3.5.1. If we defne 

ŝ := sup{s ≥ 0 : ρ̂(s) = 0}, 

then it is easy to see that ŝ = σ(c1; r1, r2), where the latter is given in (3.16). By 

Lemmas 14 and 15, 0 ≤ ρ∗(s) ≤ ρ̂(s) for s ≥ 0. Thus, ρ∗(s) = 0 for all s ∈ [0, σ], 

where σ = σ(c1; r1, r2). 

It follows from Lemma 11 that 

lim inf inf u(t, x) ≥ δ0 for each η > 0 small enough, (3.58) 
t→∞ ηt<x<(σ−η)t 

and a similar statement holds for x < 0. The desired result follows by combining with 

(3.57). 

Proof of Theorems 7 and Theorem 8. We recall that c∗ ≤ c∗, by construction. On the 

other hand, by Lemma 4, c∗ ≤ σ1(c1; r1, r2), and by Corollary 2, c∗ ≥ σ1(c1; r1, r2). 

It follows that c∗ = c∗ = σ1(c1; r1, r2), so that the spreading speed of u is given by 

c ∗ = σ1(c1; r1, r2). 

3.6 Convergence to homogeneous state 

In this section, we apply the previous spreading result to characterize the long-

term behavior of solutions of (3.4) in the moving frame where the predator persists. 

Having established the existence of the spreading speed c ∗ , and recalling Lemma 8, 

it follows that (u, v) → (0, 1) locally uniformly in any moving frame with speed above 
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c ∗ , and that u persists in any moving frame with speed below c ∗ . In the following 

we discuss the asymptotic behavior of the solutions in the latter case. Defne, for 

i = 1, 2, 

ai − 1 1 + b 
ui = , vi = (3.59)

1 + aib 1 + aib 

where a1 := a(−∞) and a2 := a(+∞). Then (ui, vi) is the unique positive root of the 

algebraic system 

u(−1 − u + aiv) = 0 = rv(1 − v − bu). 

Proof of Theorem 9. Denote c ∗ = σ(c1; r1, r2). Thanks to Corollary 2, for each η > 0, 

there exists T = T (η) > 0 and δ0 > 0 such that 

u(t, x) ≥ δ0 for t ≥ T, − ηt ≤ x ≤ (c ∗ − η/2)t. (3.60) 

Suppose for a contradiction that there exists ϵ0, η > 0 and a sequence (tk, xk) 

with tk → ∞ and 0 ≤ xk < (c ∗ − η)tk (the case for xk ≤ 0 is similar), such that 

∥(u, v)(tk, xk) − (ũ, ṽ)∥ > ϵ0 for all k ≥ 1, where ( � � 
(u2, v2) if c1 < c ∗ and xk ∈ (c1 + η)tk, (c ∗ − η)tk ,

(ũ, ṽ) = (3.61)
(u1, v1) otherwise. 

Let 

uk(t, x) := u(t + tk, x + xk) and vk(t, x) := v(t + tk, x + xk), 

then 

uk(t, x) ≥ δ0 in Ωk, 

where 

Ωk = {(t, x) : t + tk ≥ T, −η(t + tk) ≤ x + xk ≤ (c ∗ − η/2)(t + tk)}. 
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Claim. Ωk → R2 , i.e. for any compact subset K ⊂ R2 there exists k1 > 1 such that 

K ⊂ Ωk for all k ≥ k1. 

Indeed, given K, choose R > 0 such that K ⊂ [−R, R]× [−R, R]. Then for k ≫ 1, 

we have 

K ⊂ [−R, R]2 

⊆ {(t, x) : |t| ≤ R, η(R − tk) ≤ x ≤ −(c ∗ − η/2)R + ηtk/2} 

⊆ {(t, x) : |t| ≤ R, −η(t + tk) ≤ x ≤ (c ∗ − η/2)t + ηtk/2} 

⊆ {(t, x) : t + tk ≥ T, −η(t + tk) − xk ≤ x ≤ (c ∗ − η/2)t − xk + (c 
∗ − η/2)tk} 

= Ωk. 

This proves the claim. 

It follows from the claim and Lemma 7 that there exists constants 0 < δ1 < 1 

independent of k such that 

1 1 
δ1 ≤ uk ≤ and δ1 ≤ vk ≤ in Ωk (3.62)

δ1 δ1 

Using the above L∞ bounds and parabolic Lp estimates we may deduce, re-labelling 

a sub-sequence if necessary, that (uk, vk) weakly in W 2,1,p(R2) (and strongly inloc 

1+α,(1+α)/2
Cloc (R2) thanks to Sobolev embedding) to an entire solution (u∞, v∞) of the 

system ( 
ut = uxx + u(−1 − u + ãv) 

vt = dvxx + rv(1 − v − bu), � � 
where ã = a2 if c1 < c ∗ and xk ∈ (c1 + η)tk, (c ∗ − η)tk , and ã = a1 otherwise. 

Moreover, (3.62) also implies that 

δ1 ≤ u∞ ≤ 
1 

and δ1 ≤ v∞ ≤ 
1 

in R2 . (3.63)
δ1 δ1 
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Having established the positive upper and lower bounds for (u∞, v∞) on R2 , one 

can then repeat a standard argument via Lyapunov functional (see the proof of Lemma 

4.1 in [29]) that (u∞, v∞) is identically equal to the homogeneous steady state (ũ, ṽ) 

given in (3.61), i.e., (uk, vk) → (ũ, ṽ) in Cloc(R2). This in particular implies 

(u, v)(tk, xk) = (uk, vk)(0, 0) → (ũ, ṽ) as k →∞. 

But this is a contradiction, which completes the proof. 

3.7 Appendix 

3.7.1 Comparison Principle 

Recall the Hamilton-Jacobi equation 

min{ρ − sρ ′ + |ρ ′ |2 + R̃(s), ρ} = 0 for s ∈ (0, ∞). (3.64) 

We prove a comparison principle for (3.64) for discontinuous R̃ : R → R that is locally 

monotone [20]. 

Defnition. A function h : R → R is locally monotone if for every s0 ∈ R, either 

� � � � 
lim inf h(s1) − h(s2) ≥ 0 or lim sup h(s1) − h(s2) ≤ 0. 
δ→0 |si−s0|<δ δ→0 |si−s0|<δ 

s1>s2 s1>s2 

˜The assumptions on R are stated precisely as follows. 

˜(B1) R(s) is locally monotone; 

(B2) R̃∗(s) = R̃ ∗(s) almost everywhere, and infs>0 R(s) > 0, where R̃∗ and R̃ ∗ are 

defned by 

R̃∗ (s) = lim sup R̃(s ′ ) and R̃ ∗(s) = lim inf R̃(s ′ ). 
s ′→ss ′ →s 
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˜Lemma 18. Suppose R(s) satisfes (B1)-(B2). Let ρ and ρ be non-negative viscosity 

super- and sub-solutions, respectively, of (3.64) such that 

ρ(s) ρ(s))
ρ(0) ≤ ρ(0) and lim ≤ lim . (3.65) 

s→∞ s s→∞ s 

Then ρ ≤ ρ in (0, ∞). 

Proof. We apply the results of [60]. The specifc form of the Hamilton-Jacobi equa-

tion (3.64) and assumptions (B1)-(B2), imply that [60, (H1)-(H6)] hold. Hence, [60, 

Proposition 2.11] applies. 

Corollary 3. Let R̃ : R → R satisfy the assumptions (B1)-(B2). Then there exists a 

unique viscosity solution ρ̂ to(3.64) satisfying the boundary conditions 

ρ̂(s)
ρ̂(0) = 0 and lim = ∞. (3.66) 

s→∞ s 

Moreover, ρ̂ is nondecreasing. 

Proof. Thanks to (B1)-(B2), [60, Proposition 1.7(b)] applies. Next, by applying [60, 

Lemma 2.9], we deduce that s 7→ ρ̂(s) is nondecreasing. 
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[81] G. T. Pecl, M. B. Araújo, J. D. Bell, J. Blanchard, T. C. Bonebrake, I.-C. 
Chen, T. D. Clark, R. K. Colwell, F. Danielsen, B. Eveng̊ard, et al. Biodiversity 
redistribution under climate change: Impacts on ecosystems and human well-
being. Science, 355(6332):eaai9214, 2017. 

[82] A. B. Potapov and M. A. Lewis. Climate and competition: the efect of moving 
range boundaries on habitat invasibility. Bull. Math. Biol., 66(5):975–1008, 
2004. 

[83] M. H. Protter and H. F. Weinberger. Maximum principles in diferential equa-
tions. Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. 

[84] W. Qin and P. Zhou. A review on the dynamics of two species competitive ode 
and parabolic systems. J. Appl. Anal. Comput., 12:2075–2109, 2022. 

[85] N. Shigesada and K. Kawasaki. Biological Invasions: Theory and Practice. 
Oxford Series in Ecology and Evolution. Oxford University Press Inc., New 
York, 1997. 

[86] J. G. Skellam. Random dispersal in theoretical populations. Biometrika, 38:196– 
218, 1951. 

91 



[87] J. Smoller. Shock waves and reaction-difusion equations, volume 258 of 
Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York-
Berlin, 1983. 

[88] C. J. B. Sorte, S. L. Williams, and J. T. Carlton. Marine range shifts and species 
introductions: Comparative spread rates and community impacts. Global Ecol. 
Biogeogr., 19(3):303–316, 2010. 

[89] D. C. Speirs and W. S. C. Gurney. Population persistence in rivers and estuaries. 
Ecology, 82:1219–1237, 2001. 

[90] D. Tang and Y. M. Chen. Global dynamics of a Lotka-Volterra competition-
difusion system in advective homogeneous environments. J. Diferential Equa-
tions, 269:1465–1483, 2020. 

[91] D. Tang and P. Zhou. On a Lotka-Volterra competition-difusion-advection 
system: Homogeneity vs heterogeneity. J. Diferential Equations, 268:1570– 
1599, 2020. 

[92] O. Vasilyeva and F. Lutscher. Population dynamics in rivers: analysis of steady 
states. Can. Appl. Math. Q., 18:439–469, 2010. 

[93] A. Vergés, C. Doropoulos, H. A. Malcolm, M. Skye, M. Garcia-Pizá, E. M. 
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